Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6xy-4x+3y=-53
=>2x(3y-2)+3y-2=-55
=>(3y-2)(2x+1)=-55
=>\(\left(2x+1\right)\left(3y-2\right)=1\cdot\left(-55\right)=\left(-1\right)\cdot55=\left(-55\right)\cdot1=55\cdot\left(-1\right)=5\cdot\left(-11\right)=\left(-11\right)\cdot5=\left(-5\right)\cdot11=11\cdot\left(-5\right)\)
=>\(\left(2x+1;3y-2\right)\in\){(1;-55);(-1;55);(-55;1);(55;-1);(5;-11);(-11;5);(-5;11);(11;-5)}
=>\(\left(x;y\right)\in\left\{\left(0;-\dfrac{53}{3}\right);\left(-1;19\right);\left(-28;1\right);\left(27;\dfrac{1}{3}\right);\left(2;-3\right);\left(-6;\dfrac{7}{3}\right);\left(-3;\dfrac{13}{3}\right);\left(5;-1\right)\right\}\)
mà x,y nguyên
nên \(\left(x;y\right)\in\left\{\left(-1;19\right);\left(-28;1\right);\left(2;-3\right);\left(5;-1\right)\right\}\)
Ha ha ha cu Long ngu qua
Minh cug ngu nhu cu Lomg
Gio van
a/ \(M=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=\frac{2\left(n-5\right)}{n-5}+\frac{3}{n-5}\)
Để \(\frac{2n-7}{n-5}\) có giá trị nguyên thì \(3⋮\left(n-5\right)\)
=> \(n-5\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
Nếu n - 5 = -3 => n = -3 + 5 => n = 2
Nếu n - 5 = -1 => n = -1 + 5 => n = 4
Nếu n - 5 = 1 => n = 1 + 5 => n = 6
Nếu n - 5 = 3 => n = 3 + 5 => n = 8
Vậy \(n\in\left\{2;4;6;8\right\}\)
\(M=\frac{2n-7}{n-5}=\frac{2\left(n-5\right)-7+10}{n-5}=\frac{2\left(n-5\right)+3}{n-5}=2+\frac{3}{n-5}\)
Với n thuộc Z để M nguyên
\(\Leftrightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{5;4;8;2\right\}\)
Vậy...................................
\(3x+2⋮x-1\Rightarrow3\left(x-1\right)+5⋮x-1\)
\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{2;0;5;-4\right\}\)
Vậy............................
Ta có: \(6xy-8x-3y-2=0\)
\(\Leftrightarrow6xy-3y-8x+4-6=0\)
\(\Leftrightarrow3y\left(2x-1\right)-4\left(2x-1\right)=6\)
\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)=6\)
\(\Leftrightarrow\left(2x-1\right);\left(3y-4\right)\inƯ\left(6\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(3y-4\right)\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
mà 2x-1 lẻ và \(2x-1\ge-1\) \(\forall x\in N\)
nên \(\left(2x-1\right)\in\left\{-1;1;-3;3\right\}\) và \(\left(3y-4\right)\in\left\{2;-2;6;-6\right\}\)
Trường hợp 1:
\(\left\{{}\begin{matrix}2x-1=-1\\3y-4=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=0\\3y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
Trường hợp 2:
\(\left\{{}\begin{matrix}2x-1=1\\3y-4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\3y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{10}{3}\left(loại\right)\end{matrix}\right.\)
Trường hợp 3:
\(\left\{{}\begin{matrix}2x-1=-3\\3y-4=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\3y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\)
Trường hợp 4:
\(\left\{{}\begin{matrix}2x-1=3\\3y-4=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=4\\3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\left(nhận\right)\end{matrix}\right.\)
Vậy: (x,y)=(2;2)