K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Delta=b^2-4ac=\left(-48\right)^2-4.1.\left(-25\right)=2400>0\)

do đó pt có 2 nghiệm phân biệt là:

\(•x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{48-\sqrt{2400}}{2}=24-10\sqrt{6}\\ •x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{48+\sqrt{2400}}{2}=24+10\sqrt{6}\)

13 tháng 4 2018

\(x^2-48x-25=0\)

\(\Leftrightarrow x^2-2.x.24+24^2-601=0\)

\(\Leftrightarrow\left(x-24\right)^2-601=0\)

\(\Leftrightarrow\left(x-24\right)^2=601\)

\(\Leftrightarrow x-24=\sqrt{601}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-24=\sqrt{601}\\x-24=-\sqrt{601}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=24+\sqrt{601}\\x=24-\sqrt{601}\end{matrix}\right.\)

28 tháng 7 2020

\(48\left(x-2\right)=48x+25\)

\(\Rightarrow48x-48.2=48x+25\)

\(\Rightarrow48x-96=48x+25\)

\(\Rightarrow48x-48x=25+96=121\)

\(\Rightarrow0=121\)

=> Vô lí

8 tháng 8 2021

\(1,x^3-3x^2=0\)

\(x^2\left(x-3\right)=0\)

\(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=3\left(TM\right)\end{cases}}}\)

\(2,3x^3-48x=0\)

\(3x\left(x^2-16\right)=0\)

\(\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x^2=16\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=\pm4\left(TM\right)\end{cases}}}}\)

\(3,5x\left(x-1\right)=x-1\)

\(5x^2-5x=x-1\)

\(5x^2-6x+1=0\)

\(5x^2-5x-x+1=0\)

\(5x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(5x-1\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}\orbr{\begin{cases}x=\frac{1}{5}\left(TM\right)\\x=1\left(TM\right)\end{cases}}}\)

\(4,2\left(x+5\right)-x^2-5x=0\)

\(2x+10-x^2-5x=0\)

\(-x^2-3x+10=0\)

\(-x^2-5x+2x+10=0\)

\(-x\left(x+5\right)+2\left(x+5\right)=0\)

\(\left(x+5\right)\left(2-x\right)=0\)

\(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\orbr{\begin{cases}x=-5\left(TM\right)\\x=2\left(TM\right)\end{cases}}}\)

\(5,2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(2x^2-10x-3x-2x^2=26\)

\(-13x-26=0\)

\(-13\left(x+2\right)=0\)

\(x=-2\left(TM\right)\)

8 tháng 8 2021

Trả lời:

1, \(x^3-3x^2=0\)

\(\Leftrightarrow x^2\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)

Vậy x = 0; x = 3 là nghiệm của pt.

2, \(3x^3-48x=0\)

\(\Leftrightarrow3x\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}}\)

Vậy x = 0; x = 4; x = - 4 là nghiệm của pt.

3, \(5x\left(x-1\right)=x-1\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)

Vậy x = 1; x = 1/5 là nghiệm của pt.

4, \(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}}\)

Vậy x = - 5; x = 2 là nghiệm của pt.

5, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

\(\Leftrightarrow-13x=26\)

\(\Leftrightarrow x=-2\)

Vậy x = - 2 là nghiệm của pt.

3 tháng 2 2018

x4+4x3-4x2-48x-48=0

=> x4+4(x3-x2) - 48x = 48

=> x4 + 4[x2(x-1)] - 48x = 48 

3 tháng 2 2018

     \(x^4+4x^3-4x^2-48x-48=0\)

\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)

\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)

\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)

\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)

Ta có:   \(x^2+6x+12=\left(x+3\right)^2+3>0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)      

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)

Vậy...

17 tháng 6 2019

Ta có

x 3   –   12 x 2   +   48 x   –   64   =   0     ⇔   x 3   –   3 . x 2 . 4   +   3 . x . 4 2   –   4 3   =   0     ⇔   ( x   –   4 ) 3   =   0

ó x – 4 = 0 ó x = 4

Vậy x = 4

Đáp án cần chọn là: B

Bài 2 : Tìm x biết:a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1Bài 3: Sắp xếp rồi làm tính chia:a)   b)  Bài 4: Tìm a sao cho a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5b)    Đa thức 2x3 – 3x2 + x + a chia...
Đọc tiếp

Bài 2 : Tìm x biết:

a) 2x(x – 5) – x(3 + 2x) = 26               b) 5x(x – 1) = x – 1                  

c) 2(x + 5) - x2 – 5x = 0                       d) (2x – 3)2 - (x + 5)2=0

e) 3x3 – 48x = 0                                   f) x3 + x2 – 4x = 4

g) (x – 1)(2x + 3) – x(x – 1) = 0          h) x2 – 4x + 8 = 2x – 1

Bài 3: Sắp xếp rồi làm tính chia:

a)  

b) 

Bài 4: Tìm a sao cho

a)     Đa thức  x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5

b)    Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.

Bài 5*: Chứng minh rằng biểu thức:

A = x(x - 6) + 10 luôn luôn dương với mọi x.

B = x2 - 2x + 9y2 - 6y + 3 luôn luôn dương với mọi x, y.

Bài 6* : Tìm GTLN (GTNN) của biểu thức sau :

A = x2 – 4x + 2019                                       B = 4x2 + 4x + 11             

C = 4x – x2 +1                                              D = 2020 – x2 + 5x

E =  (x – 1)(x + 3)(x + 2)(x + 6)                   F= - x2 + 4xy – 5y2 + 6y – 17

G = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 7: Cho  biểu thức   M  =

a/   Tìm điều kiện  để biểu thức  M có nghĩa ?

b/   Rút gọn biểu thức M ?               

c/   Tìm x nguyên để  M có giá trị nguyên.

d/   Tìm giá trị của M tại x = -2      

e/   Với giá trị nào của x thì M bằng 5.

Bài 8 : Cho biểu thức : M =

a)     Tìm điều kiện xác định và rút gọn biểu thức

b)    Tính giá trị của M khi x = 1; x = -1

c)     Tìm số tự nhiên x để M có giá trị nguyên.

Bài 9: Cho biểu thức

a/Tìm giá trị của x để giá trị của biểu thức C được xác định.  

b/Tìm x để C = 0.  

c/ Tính giá trị của C biết |2x -1| = 3

 

d/ Tìm x để C là số nguyên âm lớn nhất.                  

1

Bài 2: 

a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

=>-13x=26

hay x=-2

b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)

c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)

hay \(x\in\left\{-5;2\right\}\)

27 tháng 7 2021

a, \(49x^2-70x+25=\left(7x\right)^2-2.7x.5+5^2=\left(7x-5\right)^2\)

Thay x = 5 vào biểu thức trên : \(\left(35-5\right)^2=30^2=900\)

b, \(x^3+12x^2+48x+64=\left(x+4\right)^3\)

Thay x = 6 vào biểu thức trên ta được : \(\left(6+4\right)^3=1000000\)

3, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

Thay x = -6 ; y = 2 vào biểu thức trên ta được : \(\left(-12+2\right)^2=100\)

27 tháng 7 2021

các bạn ơi

30 tháng 10 2016

\(3x^3-48x=8\)

\(3x\left(x^2-16\right)=0\)

\(3x\left(x-4\right)\left(x+4\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x-4=0\\x+4=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)

\(x^2-2x=24\)

\(x^2-2x-24=0\)

\(x^2-6x+4x-24=0\)

\(x\left(x-6\right)+4\left(x-6\right)=0\)

\(\left(x+4\right)\left(x-6\right)=0\)

\(\left[\begin{array}{nghiempt}x+4=0\\x-6=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=-4\\x=6\end{array}\right.\)

18 tháng 10 2021

b: \(8x^2-48x+6xy-36y\)

\(=8x\left(x-6\right)+6y\left(x-6\right)\)

\(=2\left(x-6\right)\left(4x+3y\right)\)

d: \(a^2-2ab+b^2-4\)

\(=\left(a-b\right)^2-4\)

\(=\left(a-b-2\right)\left(a-b+2\right)\)

25 tháng 5 2017

a, 2x(x-5) - x ( 3 + 2x ) = 26

=> 2x^2 - 10x - 3x - 2x ^ 2 = 26 

=> - 13 x = 26 

=> x = -2

25 tháng 5 2017

a, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

\(\Leftrightarrow-13x=26\)

\(\Leftrightarrow x=-2\)

Vậy x = -2

b, \(3x^3-48x=0\)

\(\Leftrightarrow3x\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=-4\end{cases}}\)

Vậy x = 0 hoặc x = 4 hoặc x = -4