Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 25 - y² = 8(x - 2009)
⇔ 25 - y² = 8x - 16072
⇔ - 8x = -16072 - 25 + y²
⇔ - 8x = -16097 + y²
⇔ x = 160978 - 18y²
Vậy x = 160978 - 18y²
b,=>x(y+2)-(y+2)=3
=>(y+2)(x-1)=3
Vì x,y thuộc Z nên y+2 và x-1 thuộc Ư(3)={+1;+3;-1;-3}
Sau đó thay lần lượt các cặp -1 với -3 và 1 với 3
c,Tìm x, y biết: x + y + 9 = xy - 7
=> x + y + 16 = xy
=> x + 16 = xy - y
=> x + 16 = y(x-1)
=> y = x+16y−1
Do y thuộc Z => x+16x−1
thuộc Z => x + 16 chia hết cho x - 1
=> x−1+17x−1 = 1 + 17x−1
=> x - 1 thuộc Ư(17) = {+ 1 ; + 17}
=> x thuộc {0 ; 2 ; -16 ; 18} ( thỏa mãn đề bài)
Nếu x = 0 thì y = -16
Nếu x = 2 thì y = 18
Nếu x = -16 thì y = 0
Nếu x = 18 thì y = 2
Vậy (x,y) = (0; - 16) ; (2;18) ; (-16 ; 0) ; (18 ; 2)
Thay x, y ta được cặp số thỏa mãn đề bài
Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)
Vậy x = -15 ; y = -25
a: Ta có: 5x=-4y
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
mà x+y=45
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}=\dfrac{x+y}{\dfrac{1}{5}-\dfrac{1}{4}}=\dfrac{45}{-\dfrac{1}{20}}=900\)
Do đó: x=180; y=-225
b: Ta có: \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{-1}{4}}\)
nên \(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}\)
mà -3x-2y=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{-3x}{-\dfrac{3}{5}}=\dfrac{-2y}{\dfrac{1}{2}}=\dfrac{-3x-2y}{-\dfrac{3}{5}+\dfrac{1}{2}}=\dfrac{24}{\dfrac{-1}{10}}=-240\)
Do đó: \(\left\{{}\begin{matrix}-3x=144\\-2y=-120\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-48\\y=60\end{matrix}\right.\)
2x = 8y + 1
2x luôn có chữ số tận cùng là 2 ; 4 ; 8 ; 6
8y + 1 = 2x nên 8y phải có chữ số tận cùng là 1 ; 3 ; 7 ; 5
Nhưng 8y chỉ có thể có tận cùng là 8 ; 4 ; 2 ; 6
Vậy không tồn tại bất kì giá trị x;y nào thỏa mãn .
Ta có \(\frac{x}{3}=\frac{-y}{5}\)=> \(x=\frac{-3y}{5}\)
Thay \(x=\frac{-3y}{5}\)vào A, ta có:
\(\frac{5\left(\frac{-3y}{5}\right)^2+3y^2}{10\left(\frac{-3y}{5}\right)^2-3y^2}=\frac{5\left(\frac{9y^2}{25}\right)+3y^2}{10\left(\frac{9y^2}{25}\right)-3y^2}=\frac{\frac{45y^2}{25}+3y^2}{\frac{90y^2}{25}-3y^2}=\frac{\frac{45y^2+75y^2}{25}}{\frac{90y^2-75y^2}{25}}=\frac{\frac{120y^2}{25}}{\frac{25y^2}{25}}\)= \(\frac{120y^2}{25}.\frac{25}{25y^2}=\frac{120y^2}{25y^2}=4,8\)
Vậy giá trị của A là 4,8 khi \(\frac{x}{3}=\frac{-y}{5}\)
Đặt x/3 = y/2 = z/5= k
=> x= 3k
y = 2k
z= 5k
=> xyz = 22 * 5
3k * 2k * 5k = 110
30 * k^3 = 110
k^3 = 11/3
k= .... (đề sao mà ra kq nhiều số qá)
Tìm đc k rồi thì thay vào chỗ x= 3k; y= 2k gì đó, vậy là ra x;y;z.
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{x\times y\times z}{3\times2\times5}=\frac{22,5}{30}=0,75\)
\(\Rightarrow\frac{x}{3}=0,75\Rightarrow x=2,25\)
\(\Rightarrow\frac{y}{2}=0,75\Rightarrow y=1,5\)
\(\Rightarrow\frac{z}{5}=0,75\Rightarrow z=3,75\)
ta có 8*(x-2009)^2 >= 0 nên 25 - y^2 >=0 hay 5 >=y >=
+ y = 5 => x = 2009
+ y = 4 => ko thỏa mãn
+ y = 3...
+ y = 2..
+ y =1..
+ y = 0..
=> nghiệm duy nhất x = 2009 và y =5