K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Bạn tìm GTLN ở vế trái là 3 và GTNN ở vế phải là 3

Dấu "=" xảy ra khi x = 1 và y = 2

Đó chính là x,y thỏa mãn đề bài.

8 tháng 2 2019

Ta sẽ CM bổ đề (I): Với mọi số thực a, b thì \(\left|a\right|+\left|b\right|\ge\left|a+b\right|.\)

CM: (I) \(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a+b\right|^2\)\(\Leftrightarrow\left|a\right|^2+\left|b\right|^2+2\left|ab\right|\ge\left(a+b\right)^2\)\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)\(\Leftrightarrow2\left|ab\right|\ge2ab\)\(\Leftrightarrow\left|ab\right|\ge ab\)(đúng do tính chất của giá trị tuyệt đối - GTTĐ).

Đẳng thức xảy ra khi \(ab\ge0.\)

Ta trở lại giải bài toán ban đầu.

Với mọi số thực x, ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le3\left(1\right).\)

Với mọi số thực y, áp dụng bổ đề (I) và tính chất của GTTĐ ta có:

\(\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=\left(\left|y-1\right|+\left|3-y\right|\right)+\left|y-2\right|+1\)\(\ge\left|y-1+3-y\right|+0+1=\left|2\right|+1=3\left(2\right).\)

Từ (1) và (2) suy ra vế trái \(\le3\), vế phải \(\ge3\)theo đề bài, 2 vế đều phải bằng nhau, từ đó suy ra vế trái và vế phải đều bằng 3.

Điều đó xảy ra khi và chỉ khi:

  • \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1.\)
  • \(\hept{\begin{cases}\left(y-1\right)\left(3-y\right)\ge0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(y-1\right)\left(3-y\right)\ge0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(y-1\right)\left(3-y\right)\ge0\\y=2\end{cases}}\Leftrightarrow y=2.}\)

​Thử lại với x = 1, y = 2 thấy thoả mãn.

Vậy x = 1, y = 2.

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

1 tháng 12 2021

Ta có \(\left|y-1\right|+\left|y-2\right|+\left|y-3\right|+1=\left|y-1\right|+\left|y-2\right|+\left|3-y\right|+1\ge2+\left|y-2\right|+1=3+\left|y-2\right|\ge3\)

\(\dfrac{6}{\left(x-1\right)^2+2}\le\dfrac{6}{0+2}=3\)

\(\Leftrightarrow VT\le3\le VP\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(y-1\right)\left(3-y\right)\ge0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy PT có nghiệm \(\left(x;y\right)=\left(1;2\right)\)

 

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

26 tháng 8 2018

ta có \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)

Suy ra 1 trong 3 nhân tử phải bằng 0

xét từng trường hợp rồi làm tiếp

7 tháng 6 2016

a). Nhận xét rằng từng số hạng của tổng vế phải (VP) đều >=0 nên VP >= 0. Để dấu "=" xảy ra thì từng số hạng trong tổng VP đều bằng 0. Do đó ta có: x= 1/2; y=-3/2; z=-3/2.

b) Tương tự, VP>=0 để VP<=0 = VT chỉ xảy ra khi đạt dấu "=". Cho từng số hạng của VP =0, ta được: x=1; y=2/3; z=-1.