Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=2-\frac{5}{3x+2}\)là số nguyên \(\Leftrightarrow\frac{5}{3x+2}\)nguyên mà \(x\)nguyên nên
\(3x+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{-1,1\right\}\)(vì \(x\)nguyên)
Thử lại thấy \(x=1\)thỏa mãn \(M=5x+11\)là số chính phương.
Vậy giá trị của \(x\)thỏa mãn là \(1\).
Tìm x thuộc N để x^2+5 là số chính phương
Đặt x^2+5=k^2(mttq giả sử k nguyên)
=>x^2-k^2=5
=>(x-k)(x+k)=5.
x+k>x-k>0 và 5=1.5
=>x-k=1,x+k=5=>x=3(thỏa)
\(n+1995=a^2,n+2014=b^2\)
Trừ vế theo vế ta được:
\(b^2-a^2=59\)
\(\Leftrightarrow\left(b-a\right)\left(b+a\right)=59\)
Do \(59\)là số nguyên tố và \(b>a\)nên ta chỉ có một trường hợp:
\(\hept{\begin{cases}b-a=1\\b+a=59\end{cases}}\Leftrightarrow\hept{\begin{cases}b=30\\a=29\end{cases}}\)
Khi đó \(n=-1114\).