Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-5}{x-10}=\frac{x-10+5}{x-10}=1+\frac{5}{x-1}\)
Để \(\frac{x-5}{x-10}>0\) thì \(1+\frac{5}{x-1}>0\)
\(\Rightarrow\frac{5}{x-10}>-1\)\(\Rightarrow\begin{cases}x-10>0\\x-10< -5\end{cases}\)\(\Rightarrow\begin{cases}x>10\\x< 5\end{cases}\)
Vậy x > 10 hoặc x < 5
\(\frac{x-5}{x-10}>0\Leftrightarrow\)\(\begin{cases}x-5>0\\x-10>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x>5\\x>10\end{cases}\) \(\Leftrightarrow x>10\)
hoặc \(\begin{cases}x-5< 0\\x-10< 0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x< 5\\x< 10\end{cases}\) \(\Leftrightarrow x< 5\)
Vậy x > 10 hoặc x < 5 thì \(\frac{x-5}{x-10}>0\)
a) Khi a = -2 thì x = (-2 + 5)/(-12) = 3/(-12) = -1/4
Vậy x là số hữu tỉ âm
b) Khi a = -9 thì x = (-9 + 5)/(-12) = (-4)/(-12) = 1/3
Vậy x là số hữu tỉ dương
c) Để x = 0 thì a + 5 = 0
a = -5
d) Khi a = -37 thì
x = (-37 + 5)/(-12)
= (-32)/(-12)
= 8/3 > 0
Mà 0 > -1,8
Vậy x > -1,8 khi a = -37
a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).
b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).
c) \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).
d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).
e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).
f) \(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).
\(\frac{x-5}{x-10}=\frac{x-10+5}{x-10}=1+\frac{5}{x-1}\\ \)
Để \(\frac{x-5}{x-10}>0th\text{ì}1+\frac{5}{x-1}>0\\ \Rightarrow\frac{5}{x-10}>-1\Rightarrow\begin{cases}x-10>0\\x-10< -5\end{cases}\Rightarrow\begin{cases}x>10\\x< 5\end{cases}\)
Vậy x>10 hoặc x<5
a) Để x là số hữu tỉ thì \(b-15\ne0\)
\(\Rightarrow b\ne15\)
b) Để x là số hữu tỉ dương thì \(b-15>0\)
\(\Rightarrow b>15\)
c) Để x là số hữu tỉ âm thì \(b-15< 0\)
\(\Rightarrow b< 15\)
e) Để x > 1 thì \(b-15< 12\)
\(\Leftrightarrow b< 12+15\)
\(\Rightarrow b< 27\)
theo đầu bài ta có hệ:
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)
giải hệ ta được:\(\hept{\begin{cases}x=\frac{5}{3}\\y=-3\\z=-\frac{5}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)