Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+7}{\sqrt{x}-2}=\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(2+\frac{7}{\sqrt{x}-2}\) là số nguyên <=> \(\frac{7}{\sqrt{x}-2}\) là số nguyên
=> \(\sqrt{x}-2\) thuộc ước của 7 là - 7 ; - 1; 1 ; 7
=> \(\sqrt{x}\) = { - 5; 1 ; 3 ; 9 }
=> x = { 1 ; 3 }
Online Math ác quá!!!!!!!!!!
Điểm hỏi đáp là 678
Giờ còn -978
huhuhuhuhuuhuhuhuh
Trừ 1300 điểm
Đề nghị Online Math coi lại cách trừ điểm
A=\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\)=\(\frac{2\sqrt{x}-2+5}{\sqrt{x}-2}\)=2+\(\frac{5}{\sqrt{x}-2}\)
Để A thuộc Z => \(\frac{5}{\sqrt{x}-2}\)thuộc Z => \(\sqrt{x}\)-2 thuộc Ư(5)={-5 ; 5; 1 ;-1 }
\(\sqrt{x}\)-2 | -5 | -1 | 1 | 5 |
\(\sqrt{x}\) | -3 | 1 | 3 | 7 |
x | 9 | 1 | 9 | 49 |
KL: Với x thuộc {1; 9 ;49 } thì A thuộc Z
k cho mk nha :)
Để A thuộc Z
=> A^2 thuộc Z
=> x-3+4/x-3 = 1+4/x-3 thuộc z
=> x-3 thuộc ước của 4 Giải ra