Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a) 3 . ( 2 - x ) + 5 . ( x - 6 ) = -98
6 - 3x + 5x - 30 = -98
6 + 2x -30 = -98
6 + 2x = -98 + 30
6 + 2x = -68
2x = -68 -6
2x = -74
x = -74 : 2
x = -37
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
\(-12\left(x-5\right)+7\left(3-x\right)=15\)
\(\Rightarrow-12x+60+21-7x=15\)
\(\Rightarrow-12x-7x=15-21-60\)
\(\Rightarrow-19x=-66\)
\(\Rightarrow x=\frac{66}{19}\)
\(\left|2x-5\right|=12\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=12\\2x-5=-12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=17\\2x=-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{17}{2}\left(t/m\right)\\x=-\frac{7}{2}\left(t/m\right)\end{cases}}\)
a) (x - 2)(7 - x) > 0 nên x - 2 và 7 - x cùng dấu
TH1 :\(\hept{\begin{cases}x-2>0\\7-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Rightarrow}x\in\left\{3;4;5;6\right\}}\)
TH2 :\(\hept{\begin{cases}x-2< 0\\7-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>7\end{cases}}}\)=> Ko có giá trị x thỏa mãn
Vậy x = 3 ; 4 ; 5 ; 6
b) (x2 - 13)(x2 - 17) < 0 => x2 - 13 và x2 - 17 khác dấu mà x2 - 13 > x2 - 17 (vì -13 > -17)
\(\Rightarrow\hept{\begin{cases}x^2-13>0\\x^2-17< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>13\\x^2< 17\end{cases}\Rightarrow}x^2=16\Rightarrow x\in\left\{-4;4\right\}}\)
Vậy x = -4 ; 4
c)\(\left|6x-3\right|=15\Rightarrow\orbr{\begin{cases}6x-3=15\\6x-3=-15\end{cases}\Rightarrow\orbr{\begin{cases}6x=18\\6x=-12\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy x = -2 ; 3
d)\(\left|7x-2\right|\le19\Rightarrow-19\le7x-2\le19\Rightarrow-17\le7x\le21\Rightarrow-2\frac{3}{7}\le x\le3\)
\(x\in Z\Rightarrow x=-2;-1;0;1;2;3\)