Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\dfrac{-3}{6}=\dfrac{x}{-2}=\dfrac{-18}{y}=\dfrac{3}{24}\)
\(\Rightarrow\dfrac{-3}{6}=\dfrac{3}{24}\) (vô lí)
\(\Rightarrow\) đề sai
a: \(\Leftrightarrow n+1+4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: \(\Leftrightarrow n+2-9⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{-1;-3;1;-5;7;-11\right\}\)
c: \(\Leftrightarrow2n-2+8⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3;9;-7\right\}\)
c) x^2 -x-20=0
⇔x2−5x+4x−20=0⇔x2−5x+4x−20=0
⇔(x2+4x)−(5x+20)=0⇔(x2+4x)−(5x+20)=0
⇔x(x+4)−5(x+4)=0⇔x(x+4)−5(x+4)=0
⇔(x+4)(x−5)=0⇔(x+4)(x−5)=0
⇔[x+4=0x−5=0⇔[x=−4x=5⇔[x+4=0x−5=0⇔[x=−4x=5
Vậy...
a: Thay x=-1 và y=2 vào 2x-y+3, ta được:
\(2x-y+3=-2-2+3=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình 2x-y+3>0
b:
-x+2+2(y-2)<2(2-x)(1)
=>-x+2+2y-4<4-2x
=>-x+2y-2-4+2x<0
=>x+2y-6<0
Thay x=-1 và y=2 vào x+2y-6, ta được:
\(x+2y-6=-1+4-6=-3< 0\)
=>(-1;2) là nghiệm của bất phương trình (1)
c: Thay x=-1 và y=2 vào x-y-15, ta được:
\(x-y-15=-1-2-15=-18< 0\)
=>(-1;2) là nghiệm của bất phương trình x-y-15<0
d: 3(x-1)+4(y-2)<5x-3(2)
=>3x-3+4y-8<5x-3
=>3x+4y-11-5x+3<0
=>-2x+4y-8<0
=>x-2y+4>0
Khi x=-1 và y=2 thì \(x-2y+4=-1-4+4=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình (2)
a/ Áp dụng tính chất phân phối ta được:
\(\left(x+1\right)\left(x+2\right)\)
\(=x^2+x+2x+2\)
\(=x^2+2x+1^2+x+1\)
\(=\left(x+1\right)^2+x+1\)
Mà \(x< \left(x+1\right)^2\)
\(\Rightarrow\left(x+1\right)^2+x+1>0\)
=> Biểu thức trên lớn hơn 0
=> Không có kết quả (Sai đề)
b/ Áp dụng tính chất phân phối ta được:
\(\left(x-2\right)\left(x+\frac{2}{3}\right)\)
\(=x^2-2x+\frac{2}{3}x-\frac{4}{3}\)
\(=x^2-2x+1+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{1}{3}\left(2x-1\right)\)
Mà \(\left(x-1\right)^2\ge0\)
=> Để thỏa mãn đề bài cần \(\frac{1}{3}\left(2x-1\right)>0\)
=> \(2x>1\Rightarrow x>\frac{1}{2}\)
a ) \(\left(x+1\right).\left(x+2\right)< 0\)
\(=x.\left(x+2\right)+1.\left(x+2\right)< 0\)
\(=x.\left(x-2\right)+\left(x+2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)