K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2018

a, \(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)

=>\(2^{x-1}+\frac{5}{2}.2^{x-1}=\frac{7}{32}\)

=>\(2^{x-1}\left(1+\frac{5}{2}\right)=\frac{7}{32}\)

=>\(2^{x-1}\cdot\frac{7}{2}=\frac{7}{32}\)

=>\(2^{x-1}=\frac{1}{16}=\frac{1}{2^4}=2^{-4}\)

=>x-1=-4

=>x=-5

b, |x - 4| + |x - 10| + |x + 101| + |x + 990| + |x + 1000| = |4-x|+|10-x|+|x+101|+|x+990|+|x+1000|

Ta có: \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)

\(\Rightarrow\left|4-x\right|+\left|10-x\right|+\left|x+990\right|+\left|x+1000\right|\ge4-x+10-x+x+990+x+1000\)

\(\Rightarrow\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\ge2004+\left|x+101\right|\)

\(\Rightarrow2005\ge2004+\left|x+101\right|\)

\(\Rightarrow\left|x+1\right|\le1\)

\(\Rightarrow-1\le x+101\le1\)

\(\Rightarrow-102\le x\le-100\)

Vì \(x\in Z\)

\(\Rightarrow x\in\left\{-102;-101;-100\right\}\)

29 tháng 6 2018

bài a nhầm 2 dòng cuối

=>x-1=-4

=>x=-3

21 tháng 10 2016

b)\(2^{x-1}+5\cdot2^{x-2}=\frac{7}{32}\)

\(2^x:2+5\cdot2^x:2^2=\frac{7}{32}\)

\(2^x:2+2^x:\frac{4}{5}=\frac{7}{32}\)

\(2^x\cdot\left(\frac{1}{2}+\frac{5}{4}\right)=\frac{7}{32}\)

\(2^x\cdot\frac{7}{4}=\frac{7}{32}\)

\(2^x=\frac{7}{32}:\frac{7}{4}=\frac{1}{8}\)

\(2^x=\frac{2^0}{2^3}=2^{-3}\)

\(\Rightarrow x=-3\)

21 tháng 10 2016

a) \(4^x+4^{x+3}=4160\)

\(\Rightarrow4^x+4^x.4^3=4160\)

\(\Rightarrow4^x.\left(1+4^3\right)=4160\)

\(\Rightarrow4^x.65=4160\)

\(\Rightarrow4^x=64\)

\(\Rightarrow4^x=4^4\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

b) \(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)

\(\Rightarrow2^x.\frac{1}{2}+5.2^x.\frac{1}{4}=\frac{7}{32}\)

\(\Rightarrow2^x.\left(\frac{1}{2}+5.\frac{1}{4}\right)=\frac{7}{32}\)

\(\Rightarrow2^x.\frac{7}{4}=\frac{7}{32}\)

\(\Rightarrow2^x=\frac{7}{32}:\frac{7}{4}\)

\(\Rightarrow2^x=\frac{1}{8}\)

\(\Rightarrow2^x=2^{-3}\)

\(\Rightarrow x=-3\)

Vậy \(x=-3\)

 

 

a. 2x-1+ 5.2x-1:2=7/32

=> 2x+1.(1+5/2)=7/32

=>2x+1.7/2=7/32

=> 2x+1=1/16=1/24

=> x+1=-4=>x=-5

8 tháng 3 2019

a. 2x-1+ 5.2x-1:2=7/32

=> 2x+1.(1+5/2)=7/32

=>2x+1.7/2=7/32

=> 2x+1=1/16=1/24

=> x+1=-4=>x=-3

6 tháng 7 2015

\(\Leftrightarrow2.2^{x-2}+5.2^{x-2}=7.2^{-5}\Leftrightarrow7.2^{x-2}=7.2^{-5}\)

\(\Leftrightarrow x^{x-2}=2^{-5}\Leftrightarrow x-2=-5\Leftrightarrow x=-3\)

6 tháng 7 2015

<=> \(2.2^{x-2}+5.2^{x-2}=\frac{7}{32}\) <=> \(\left(2+5\right).2^{x-2}=\frac{7}{32}\)

<=> \(7.2^{x-2}=\frac{7}{32}\)<=> \(2^{x-2}=\frac{1}{32}=2^{-5}\) => x - 2 = -5 => x = -3

4 tháng 12 2017

2x-1+5.2x-2=7/32

=>2.2x-2+5.2x-2=7/32

=7.2x-2=7/32

=>2x-2=1/32

=>2x-2=2-5

=>x-2=-5

=>x=-3

vậy x=-3

k nha

4 tháng 12 2017

\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)

\(\Rightarrow2.2^{x-2}+5.2^{x-2}=\frac{7}{32}\)

\(=7.2^{x-2}=\frac{7}{32}\)

\(\Rightarrow2^{x-2}=\frac{1}{32}\)

\(=2^{x-2}=2^{-5}\)

\(\Rightarrow x-2=-5\)

\(\Rightarrow x=-3\)

8 tháng 3 2019

a. 2x-1+ 5.2x-1:2=7/32

=> 2x+1.(1+5/2)=7/32

=>2x+1.7/2=7/32

=> 2x+1=1/16=1/24

=> x+1=-4=>x=-5

8 tháng 3 2019

\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)

\(\Rightarrow2^{x-1}+5.2^{x-1}.2^3=\frac{7}{32}\)

\(\Rightarrow2^{x-1}.\left(1+5.2^3\right)=\frac{7}{32}\)

\(\Rightarrow2^{x-1}.41=\frac{7}{32}\)

\(\Rightarrow2^{x-1}=\frac{7}{1312}\)

\(\Rightarrow\)   Ko có x thỏa mãn

DD
23 tháng 5 2022

1) \(4x=7y\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{49}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{49+16}=\dfrac{260}{65}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4.49=196\\y^2=4.16=64\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=14,y=8\\x=-14,y=-8\end{matrix}\right.\) (vì \(\dfrac{x}{7}=\dfrac{y}{4}\) nên \(x,y\) cùng dấu) 

2) \(2^{x-1}+5.2^{x-2}=\dfrac{7}{32}\)

\(\Leftrightarrow2^{x-1}+\dfrac{5}{2}.2^{x-1}=\dfrac{7}{32}\)

\(\Leftrightarrow2^{x-1}=\dfrac{1}{16}=2^{-4}\)

\(\Leftrightarrow x-1=-4\)

\(\Leftrightarrow x=-3\)

3) \(\left|x+5\right|+\left(3y-4\right)^{2016}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\3y-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)