Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
a) (x+3)(x+5)=0
=>x+3=0 hoặc x+5=0
=>x=-3 hoặc -5
b) (x-1).5-1=0
=>5x-5-1=0
=>5x-6=0
=>5x=6
=>x=6/5
c)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(A=\frac{2019}{2020}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2B=1-\frac{1}{2019}\)
\(2B=\frac{2018}{2019}\)
\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)
1. Tự làm
2. Ta có: \(x_1+x_2+x_3+...+x_{2017}+x_{2018}+x_{2019}+x_{2020}=0\)
=> \(\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+....+\left(x_{2017}+x_{2018}+x_{2019}\right)+x_{2020}=0\)
=> \(3+3+....+3+x_{2020}=0\) (gồm 673 chữ số 3 vì x1 + .... + x2019 gồm 2019 hạng tử gộp lại mỗi cặp 3 hạng tử)
=> \(3.673+x_{2020}=0\)
=> \(2019+x_{2020}=0\)
=> \(x_{2020}=-2019\)
3. a) 3(x - 1) - (x - 5) = -18
=> 3x - 3 - x + 5 = -18
=> 2x + 2 = -18
=> 2x = -18 - 2
=> 2x = -20
=> x = -20 : 2
=> x = 10
b ) x + (x + 1) + (x + 2) + ... + (x + 2019) = 0
=> (x + x + ... + x) + (1 + 2 + ... + 2019) = 0
=> 2020x + (2019 + 1).[(2019 - 1) : 1 + 1] : 2 = 0
=> 2020x + 2020. 2019 : 2 = 0
=> 2020x + 2039190 = 0
=> 2020x = -2039190
=> x = -2039190 : 2020
=> x = -10095
(xem lại đề)
c) Ta có: 3x + 23 = 3(x + 4) + 11
Do 3(x + 4) \(⋮\)4 => 11 \(⋮\)x + 4
=> x + 4 \(\in\)Ư(11) = {1; -1; 11; -11}
Với: +) x + 4 = 1 => x = 1 - 4 = -3
+) x + 4 = -1 => x = -1 - 4 = -5
+) x + 4 = 11 => x = 11 - 4 = 7
+) x + 4 = -11 => x = -11 - 4 = -15
4a) Ta có: 22x - y = 21x + x - y = 21 + (x - y)
Do 21x \(⋮\)7; x - y \(⋮\)7
=> 22x - y \(⋮\)7
b) 8x + 20y = 7x + 21y + x - y = 7(x + 3y) + (x - y)
Do : 7(x + 3y) \(⋮\)7; x - y \(⋮\)7
=> 8x + 20y \(⋮\)7
c) 11x + 10y = 14x + 7y - 3x + 3y = 7(2x + y) - 3(x - y)
Do: 7(2x + y) \(⋮\)7; 3(x - y) \(⋮\)7
=> 11x + 10y \(⋮\)7
b. 1404 : [118 - (4x + 6)] = 27
118 - (4x + 6) = 52
4x + 6 = 66
4x = 60
x = 15
d) \(5x^2-3x=0\)
\(\Leftrightarrow x\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\5x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{5}\end{cases}}\)
e) \(3\left(x-1\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[3-4.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3-4\left(x-1\right)=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\4\left(x-1\right)=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x-1=\frac{3}{4}\Rightarrow x=\frac{7}{4}\end{cases}}\)
f) \(2\left(x-2\right)^2=\left(x-2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x-2=\frac{1}{2}\Rightarrow x=\frac{5}{2}\end{cases}}\)
g) \(\left(x-2020\right)^4=\left(x-2020\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-2020\right)^2=0\\\left(x-2020\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=2019,x=2021\end{cases}}\)
a) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+..+\left(x+99\right)=0\)
Tổng các số hạng là;
\(\left(99+1\right):2=50\)(số hạng)
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+..+\left(x+99\right)=0\)
\(\Leftrightarrow50x+\left(1+3+..+99\right)=0\)
\(\Leftrightarrow50x+\frac{\left(99+1\right).50}{2}=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow50x=-2500\)
\(\Leftrightarrow x=\frac{-2500}{50}=-50\)
b) \(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+..+10+11=11\)
\(\left(x-3\right)+\left(x-2\right)+\left(x-1\right)+..+10=0\)
gọi các số hạng từ ( x-3) đến 10 là n
Ta có; \(\left[10+\left(x-3\right)\right].n:2=0\)
\(\Rightarrow\left(x+7\right).n=0\)
Vì \(n\ne0\)
Nên \(x+7=0\)
\(\Rightarrow x=-7\)
\(\left(3x-12\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-12=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=12\\y=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\y=5\end{cases}}}\)
vậy x=4 và y=5
Bài 2; tìm cặp x,y thuộc N sao cho:
a, (3x -12) ( y- 5) = 0
\(\Rightarrow\orbr{\begin{cases}3x-12=0\\y-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x=12\\y=5+0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=5\end{cases}}}\)
a) (x - 1)3 - 1 = 0
<=> (x - 1)3 = 0 + 1
<=> (x - 1)3 = 1
<=> (x - 1)3 = 13
<=> x - 1 = 1
<=> x = 1 + 1
<=> x = 2
=> x = 2
b) (x - 4)2019 = 1
<=> (x - 4)2019 = 12019
<=> x - 4 = 1
<=> x = 1 + 4
<=> x = 5
=> x = 5
c) (x - 2019)2020 = 0
<=> (x - 2019)2020 = 02020
<=> x - 2019 = 0
<=> x = 0 + 2019
<=> x = 2019
=> x = 2019
d) (x - 1)2 = (x - 1)3
<=> x2 - 2x + 1 = x3 - 2x2 + x - x2 + 2x - 1
<=> x2 - 2x + 1 = x3 - 3x2 + 3 - 1
<=> x2 - 2x + 1 - x3 + 3x2 - 3 + 1 = 0
<=> 4x2 - 5x + 2 - x3 = 0
<=> (-x2 + 3x - 2)(x - 1) = 0
<=> (x2 - 3x + 2)(x - 1) = 0
<=> (x - 2)(x - 1)(x - 1) = 0
<=> x - 2 = 0 hoặc x - 1 = 0
x = 0 + 2 x = 0 + 1
x = 2 x = 1
=> x = 1 hoặc x = 2