Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\frac{2n-7}{n-5}=\frac{2n-10}{n-5}+\frac{3}{n-5}=2+\frac{3}{n-5}\)
Để M là số nguyên thì \(\frac{3}{n-5}\) là số nguyên <=> 3 chia hết cho n-5
<=>n-5\(\in\)Ư(3)={-3;-1;1;3} <=> n\(\in\){2;4;6;8}
Bài 17: Tìm số nguyên n để các phân số sau có giá trị nguyên:
a)\(\frac{3}{x-1}\)b)\(\frac{4}{2x-1}\)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(a=\frac{2x+4}{x-3}=\frac{2x-6+6+4}{x-3}=\frac{2x-6+10}{x-3}=\frac{2x-6}{x-3}+\frac{10}{x-3}=\)\(2+\frac{10}{x-3}\) Vay de 2x+4 /x-3 la so nguyen thi 2+10/x-3 phai la so nguyen hay 10/x-3 la so nguyen Suy ra x-3 thuoc uoc cua 10=(1;-1;2;-2;5;-5;10;-10) Roi giai ra tung truong hop
\(A=\frac{2x-1}{x-2}=\frac{2x-4+3}{x-2}=\frac{2\left(x-2\right)+3}{x-2}=2+\frac{3}{x-2}\)
\(A=2+\frac{3}{x-2}\in Z\) \(\Leftrightarrow\frac{3}{x-2}\in Z\)
\(\Rightarrow x-2\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
\(\Rightarrow x=-1;1;3;5\)
a) Để \(\frac{3}{x-1}\inℤ\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
b) Để \(\frac{4}{2x-1}\inℤ\Rightarrow\left(2x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
=> \(2x\in\left\{-3;-1;0;2;3;5\right\}\)
=> \(x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
c) Ta có: \(\frac{3x+7}{x-7}=\frac{\left(3x-21\right)+28}{x-7}=2+\frac{28}{x-7}\)
Xong xét các TH như a,b nhé
thanks nhưng mai mik mới t.i.k đc bạn
Để \(\frac{x+5}{2x-2}\inℤ\) thì \(\left(x+5\right)⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2\left(x+5\right)\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x+10\right]⋮\left(2x-2\right)\)
\(\Leftrightarrow\left[2x-2+10\right]⋮\left(2x-2\right)\)
Vì \(\left[2x-2\right]⋮\left(2x-2\right)\) nên \(10⋮\left(2x-2\right)\)
\(\Leftrightarrow\left(2x-2\right)\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
ĐKXĐ : \(x\ne1\)
\(\frac{x+5}{2x-2}=\frac{x-1+6}{2\left(x-1\right)}=\frac{2-1}{2\left(x-1\right)}+\frac{6}{2\left(x-1\right)}=\frac{1}{2}+\frac{3}{x-1}\)
\(\Rightarrowđể\frac{x+3}{2x-2}\)có giá trị nguyên thì \(x-1\inƯ\left(3\right)\Rightarrow x-1\in\left\{-1;-1;1;3\right\}\)
vậy để \(\frac{x+5}{2x-2}\)có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
\(M=\frac{2x-1}{x-3}=\frac{2\left(x-3\right)+5}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{5}{x-3}=2+\frac{5}{x-3}\in Z\)
=>5 chia hết x-3
=>x-3\(\in\){1;-1;5-5}
=>x\(\in\){4;2;8;-2}
M = \(\frac{2x-1}{x-3}\)
M = \(\frac{2x-6+5}{x-3}\)
M = \(\frac{2\left(x-3\right)+5}{x-3}\)
M = \(\frac{2\left(x-3\right)}{x-3}+\frac{5}{x-3}\)
M = 2 +\(\frac{5}{x-3}\)
Để M nguyên thì 5 chia hết cho x - 3
-> x - 3 \(\in\)Ư (5)
Ta có bảng sau:
Vậy x \(\in\)4;2;8;-2 thì M nguyên