Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{-1}{5}\le\dfrac{x}{8}\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{-8}{40}\le\dfrac{5x}{40}\le\dfrac{10}{40}\)
\(\Rightarrow5x\in\left\{0;\pm5;10\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;2\right\}\)
b) \(\dfrac{4}{x-6}=\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow\dfrac{4}{x-6}=\dfrac{-12}{18}\)
\(\Rightarrow-12.\left(x-6\right)=4.18\)
\(\Rightarrow-12x+72=72\)
\(\Rightarrow-12x=72-72\)
\(\Rightarrow-12x=0\)
\(\Rightarrow x=0:-12\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{y}{24}=\dfrac{-12}{18}\)
\(\Rightarrow y=\dfrac{-12.24}{18}=-16\)
c) \(\dfrac{x+46}{20}=x.\dfrac{2}{5}\)
\(\dfrac{x+46}{20}=\dfrac{2x}{5}\)
\(\Rightarrow5.\left(x+46\right)=2x.20\)
\(\Rightarrow5x+230=40x\)
\(\Rightarrow5x-40x=-230\)
\(\Rightarrow-35x=-230\)
\(\Rightarrow x=-230:-35\)
\(\Rightarrow x=\dfrac{46}{7}\)
Chúc bạn học tốt!
\(x=\dfrac{1}{2}-\dfrac{2}{3}=\dfrac{3-4}{6}=-\dfrac{1}{6}\) là phương án c
a) \(\dfrac{x}{2}=\dfrac{2}{x}\)
⇔ \(x^2=4\)
⇒ \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
b) \(\dfrac{x}{-5}=\dfrac{-5}{x}\)
⇔ \(x^2=25\)
⇒ \(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
\(a,\Rightarrow x^2=2^2\\ \Rightarrow x=2\\ b,x^2=\left(-5\right)^2\\ \Rightarrow x=-5\)
Ta có:
\(\dfrac{x+5}{x-2}=\dfrac{x-2+7}{x-2}=\dfrac{x-2}{x-2}+\dfrac{7}{x-2}=1+\dfrac{7}{x-2}\)
Để \(\dfrac{x+5}{x-2}\) là một số nguyên thì \(\dfrac{7}{x-2}\) phải nguyên
\(\Rightarrow7\) ⋮ \(x-2\)
\(\Rightarrow x-2\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{3;1;9;-5\right\}\)
\(\dfrac{x-5}{x-2}=\dfrac{x-2-3}{x-2}=1-\dfrac{-3}{x-2}\)
để `(x-5)/(x-2)` là số nguyên thì -3 phải chia hết cho x-2
=> x-2 thuộc ước của -3
ta có bảng sau
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
vậy \(x\in\left\{3;1;5;-1\right\}\)
Ta có: `(x-5)/(x-2) = (x-2-3)/(x-2) = 1 - 3/(x-2)`
Để `(x-5)/(x-2)` là số nguyên thì `3/(x-2) ∈ Z`
`=> x - 2 ∈ Ư(3) = {-3;-1;1;3}`
`=> x∈ {-1;1;3;5}`
Vậy `(x-5)/(x-2)` là số nguyên khi `x ∈ {-1;1;3;5}`
\(\dfrac{1}{2}+\dfrac{-1}{3}+\dfrac{-2}{3}\le x< \dfrac{-3}{5}+\dfrac{1}{6}+\dfrac{-2}{5}+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{1}{2}+\left(\dfrac{-1}{3}+\dfrac{-2}{3}\right)\le x< \left(\dfrac{-3}{5}+\dfrac{-2}{5}\right)+\left(\dfrac{1}{6}+\dfrac{3}{2}\right)\)
\(\Leftrightarrow\dfrac{1}{2}+\left(-1\right)\le x< -1+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{-1}{2}\le x< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{-3}{6}\le x< \dfrac{4}{6}\)
\(\Leftrightarrow x\in\left\{-3;-2;-1;0;1;2;3\right\}\)
a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
y | -10 | 10 | -5 | 5 | -2 | 2 | -1 | 1 |
c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 1 | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 4 | -2 |
y | 2 | -4 | 0 | -2 |
b: =>xy=12
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
\(\dfrac{x+46}{20}=x\dfrac{2}{5}\)
\(\Rightarrow\dfrac{x+46}{20}=\dfrac{5x+2}{5}\)
\(\Leftrightarrow5\cdot\left(x+46\right)=20\cdot\left(5x+2\right)\)
\(\Leftrightarrow100x+40-5x-230=0\)
\(\Leftrightarrow95x-190=0\)
\(\Leftrightarrow x=2\)