Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> \(\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)
<=>\(\frac{x-ab-ac-bc}{a+b}+\frac{x-ab-ac-bc}{a+c}+\frac{x-ab-ac-bc}{b+c}=0\)
<=>\(\left(x-ab-ac-bc\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)
Vì \(a\ne-b;b\ne-c;c\ne-a\) nên tổng 3 phân số kia khác 0
=> (x-ab-ac-ca)=0
=>x=ab+ac+ca
2. \(\frac{\left(3X+5Y\right)}{X-2Y}=\frac{1}{4}=>4\left(3X+5Y\right)=X-2Y\\ 12X+20Y=X-2Y\\ X-12X=2Y-20Y\\ -11X=-18Y\\ =>\frac{X}{Y}=-\frac{18}{-11}=\frac{18}{11}\)
Bài 1. 4/25 = 100/x => x = 25.100/4 = 2500/4 = 625
Bài 3. (a-3)/(a+3) = (b-6)/(b+6)
=> (a-3)(b+6) = (a+3)(b-6)
=> ab + 6a -3b -18 = ab - 6a + 3b -18
=> 12a = 6b
=> a/b = 6/12 = 1/2
b)Để N có giá trị nguyên thì căn x-5 EƯ(9)={1;-1;3;-3;9;-9}
=>căn x E{6;4;8;2;14;-4}
=>xE{36;24;64;4;196;16}
Vậy để N có giá trị nguyên thì x E{36;24;64;4;196;16}
Từ giả thiết ta suy ra \(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\).
Áp dụng tính chất của dãy tỉ số bằng nhau ta được từ
\(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(z+x\right)-\left(x+y\right)}{ca-ab}=\frac{z-y}{a\left(c-b\right)}=\frac{y-z}{a\left(b-c\right)}.\) (1)
Tương tự, \(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\frac{z-x}{b\left(c-a\right)},\) (2)
và
\(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(z+x\right)}{bc-ca}=\frac{y-x}{c\left(b-a\right)}=\frac{x-y}{c\left(a-b\right)}.\) (3)
Từ (1), (2), (3) ta suy ra \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}.\) (ĐPCM)
\(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)
\(\frac{x-ab}{a+b}-c+\frac{x-ac}{a+c}-b+\frac{x-bc}{b+c}-a=0\)
\(\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ba-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)
\(\left(x-ab-ac-bc\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=0\)
\(x-ab-ac-bc=0\)
\(x=ab+ac+bc\)