K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2023

\(a,\sqrt{2x-5}\)

Biểu thức trên xác định \(\Leftrightarrow2x-5\ge0\)

\(\Leftrightarrow2x\ge5\)

\(\Leftrightarrow x\ge\dfrac{5}{2}\)

\(b,\sqrt{3x+1}\)

Biểu thức trên xác định \(\Leftrightarrow3x+1\ge0\)

\(\Leftrightarrow3x\ge-1\)

\(\Leftrightarrow x\ge-\dfrac{1}{3}\)

\(c,\dfrac{2}{x+2}\)

Biểu thức trên xác định \(\Leftrightarrow x+2\ne0\)

\(\Leftrightarrow x\ne-2\)

17 tháng 6 2021

a)Điều kiện xác định:`-(x+1)^2>=0`

`<=>(x+1)^2<=0`

Mà `(x+1)^2>=0`

`=>(x+1)^2=0`

`<=>x=-1`

`b)` \(\begin{cases}x+1 \ge 0\\x^2-9 \ne 0\\\end{cases}\)

`<=>` \(\begin{cases}x \ge -1\\(x-3)(x+3) \ne 0\\\end{cases}\)

`<=>` \(\begin{cases}x \ge -1\\x \ne 3\\\end{cases}\)

17 tháng 6 2021

a, \(\sqrt{-\left(x+1\right)^2}\) xác định \(< =>-\left(x+1\right)^2\ge0\)

mà \(-\left(x+1\right)^2\le0=>\)để \(\sqrt{-\left(x+1\right)^2}\) xác định thì \(x=-1\)

Vậy \(3+\sqrt{-\left(x+1\right)^2}\) xác định khi x=-1

b,\(\dfrac{3x+9}{x^2-9}+\sqrt{x+1}\) xác định \(< =>\left\{{}\begin{matrix}x^2-9\ne0\\x+1\ge0\end{matrix}\right.< =>\left\{{}\begin{matrix}x\ne\pm3\\x\ge-1\end{matrix}\right.\)

16 tháng 6 2021

a) Biểu thức xác định `<=> (x+2)(x-1) >=0 <=>` \(\left\{{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

b) Biểu thức xác định `<=> (x-3)/(2x-1) >= 0 <=>` \(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{1}{2}\end{matrix}\right.\)

c) Biểu thức xác định `<=> -x^2+2x-1 >= 0 <=> -(x-1)^2 >= 0 <=> x =1`

a) Ko dùng ngoặc nhọn vì không có số nào thỏa mãn \(-2\ge x\ge1\)

b) Biểu thức xác định \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x< \dfrac{1}{2}\end{matrix}\right.\)

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:
a. Để biểu thức xác định thì:

$x^2-x-6\geq 0$

$\Leftrightarrow (x+2)(x-3)\geq 0$

$\Leftrightarrow x\geq 3$ hoặc $x\leq -2$

b. Để biểu thức xác định thì:

$4x-x^2-5\geq 0$

$\Leftrightarrow x^2-4x+5\leq 0$

$\Leftrightarrow (x-2)^2+1\leq 0$

$\Leftrightarrow (x-2)^2\leq -1< 0$ (vô lý)

Vậy không tồn tại $x$ để bt xác định

c. Để biểu thức xác định thì:

$x^2-8x+15>0$

$\Leftrightarrow (x-3)(x-5)>0$

$\Leftrightarrow x>5$ hoặc $x< 3$

a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-2\end{matrix}\right.\)

b) ĐKXĐ: \(x\in\varnothing\)

c) ĐKXĐ: \(\left[{}\begin{matrix}x>5\\x< 3\end{matrix}\right.\)

22 tháng 10 2023

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-5\end{matrix}\right.\)

b: ĐKXĐ: \(x=2\)

c: ĐKXĐ: \(x\ge4\)

27 tháng 8 2021

a, \(x+1\ge0\Leftrightarrow x\ge-1\)

b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)

c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

27 tháng 8 2021

d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)

e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)

29 tháng 10 2021

\(a,ĐK:\dfrac{-5}{x^2+6}\ge0\Leftrightarrow x\in\varnothing\)

( Do \(-5< 0;x^2+6>0\Leftrightarrow\dfrac{-5}{x^2+6}< 0,\forall x\))

\(b,ĐK:\dfrac{3x-2}{\left(x-1\right)^2+3}\ge0\\ \Leftrightarrow3x-2\ge0\left[\left(x-1\right)^2+3>0\right]\\ \Leftrightarrow x\ge\dfrac{2}{3}\)

29 tháng 10 2021

a) ĐKXĐ: \(x^2+6< 0\left(VLý.do.x^2+6\ge6>0\right)\)

Vậy biểu thức k xác định với mọi x

b)  \(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-1\right)^2+3}}\)

ĐKXĐ: \(\left\{{}\begin{matrix}3x-2\ge0\\\left(x-1\right)^2+3\ne0\left(đúng\forall x\right)\end{matrix}\right.\)

\(\Leftrightarrow x\ge\dfrac{2}{3}\)