K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

a) Để D có giá trị âm thì 2/5.x > x=> 2/5.x > x.x 

=> x < 2/5

b) Để E có giá trị âm thì x - 2 hoặc x - 6 phải có giá trị âm. Mà x - 6 < x - 2 => x - 6 âm và x - 2 dương => x - 6 < 0 và x - 2 > 0 

=> 2 < x < 6

c) Để F nhận giá trị âm thì x2 - 1 phải âm (do x2 luôn lơn hơn hoặc bằng 0)

=> x2 - 1 < 0 => x2 < 1

Mà nếu x = 0 thì x2 = 0 => loại vì mẫu không thể = 0 

=> 0 < x < 1 

6 tháng 1 2021

ok how are you

19 tháng 8 2017

a) \(C=\frac{5}{x-2}\)

=> x-2 thuộc Ư(5) = {-1,-5,1,5}

Ta có bảng :

x-2-1-515
x1-337

Vậy x = {-3,1,3,7}

b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}

Ta có bảng :

x-4-1-3-9139
x31-55713

Vậy x = {-5,1,3,5,7,13}

2 tháng 5 2017

a) Với mọi x nguyên ta luôn có:  \(\left(x-1\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\)  x = 1.

Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)

Vậy GTNN của A là 2008 tại x = 1.

b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)

.Dấu "=" xảy ra  \(\Leftrightarrow\)  \(\left|x+4\right|=0\)  \(\Leftrightarrow\)  \(x+4=0\)  \(\Leftrightarrow\)  x = -4.

Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)

Vậy GTNN của B là 1996 tại x = -4.

2 tháng 5 2017

c)  \(C=\frac{5}{x-2}\) nhỏ nhất  \(\Leftrightarrow\)  x - 2 lớn nhất, mà x nguyên nên ko tìm đc giá trị của x

bn xem lại đề câu c, d được ko

chắc đề là: "Tìm x nguyên để   \(C=\frac{5}{x-2}\) đạt giá trị nguyên nhỏ nhất"

Dạng 3 :

a) 3x - 10 = 2x + 13

=> 3x - 2x = 13 - 10

=> x = 3

b) x + 12 = -5 - x

=> x + x = -5 - 12

=> 2x = -17

=> x = -8,5

c) x + 5 = 10 - x 

=> x + x = 10 - 5

=> 2x = 5

=> x = 2,5

d) 6x + 23 = 2x - 12

=> 2x - 6x = 23 + 12

=> -4x = 35

=> x = -8,75

e) 12 - x = x + 1

=> x + x = 12 - 1

=> 2x = 11

=> x = 5,5

f) 14 + 4x = 3x + 20

=> 4x - 3x = 20 - 14

=> x = 6

22 tháng 7 2020

a) A = (x - 1)2 + 12

Do (x - 1)2 \(\ge\)\(\forall\)

=> (x - 1)2 + 12 \(\ge\)12 \(\forall\)x

Dấu "="xảy ra <=> x - 1 = 0 <=> x = 1

Vậy MinA = 12 khi  x = 1

b) B = |x + 3| + 2020

Do |x + 3| \(\ge\)\(\forall\)x

=> |x + 3| + 2020 \(\ge\)2020 \(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinB = 2020 khi x = -3

(c;d max hay min ?)

22 tháng 7 2020

a) \(A=\left(x-1\right)^2+12\ge12\left(\forall x\right)\)

\("="\Leftrightarrow x=1\)

b) \(B=\left|x+3\right|+2020\ge2020\left(\forall x\right)\)

\("="\Leftrightarrow x=-3\)

c) \(C=\frac{5}{x-2}\ge\frac{5}{-1}=-5\left(\forall x\right)\)

\("="\Leftrightarrow x=1\)

d) \(D=\frac{x+5}{x-4}=1+\frac{9}{x-4}\ge1+\frac{9}{-1}=-8\left(\forall x\right)\)

\("="\Leftrightarrow x=3\)

\(A=\frac{2x+1}{x-2}=\frac{2x-4+5}{x-2}=2+\frac{5}{x-2}\)

Để A thuộc Z thì 5/(x-2) thuộc Z hay \(x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)

\(B=\frac{-x+8}{x+1}=\frac{-\left(x+1\right)-7}{x+1}=-1+\frac{-7}{x+1}\)

Để \(A\inℤ\Leftrightarrow\frac{-7}{x+1}\Leftrightarrow x+1\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;6;-8\right\}\)

4 tháng 5 2017

Giải:

Để  \(C=\frac{5}{x-2}\) đạt giá trị nhỏ nhất

\(\Leftrightarrow\frac{5}{x-2}\) phải nhỏ nhất \(\Leftrightarrow x-2\) phải lớn nhất

\(\Leftrightarrow x-2=5\Leftrightarrow x=7\)

Vậy x=7