K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Đoạn \ldots là sao nhỉ? 

11 tháng 7 2023

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

27 tháng 1 2023

\(Ta\) \(có:\) \(A=|x-1|+|x-2|\)

\(mà:\) \(|x-1|\ge0\) \(và\) \(|x-2|\ge0\)

\(\RightarrowĐể\) \(A_{min}\) \(thì\) \(|x-1|và\) \(|x-2|\) \(nhỏ\) \(nhất\)

\(\Rightarrow x\in(1;2)\)

27 tháng 1 2023

hi

 

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

14 tháng 9 2015

Vì |1/2 - x| > 0

=> 0,6 + |1/2 - x| > 0,6

=> A > 0,6

Dấu "=" xảy ra

<=> 1/2 - x = 0

<=> x = 1/2

KL: Amin = 0,6 <=> x = 1/2

Vì |2x + 2/3| > 0

=> 2/3 - |2x + 2/3| < 2/3

=> B < 2/3

Dấu "=" xảy ra

<=> 2x + 2/3 = 0

<=> 2x = -2/3

<=> x = -1/3

KL: Bmax = 2/3 <=> x = -1/3

10 tháng 5 2022

\(A=-12+\left(x-4\right)^2+\left(y-2\right)^2\)

Ta có: \(\left\{{}\begin{matrix}\left(x-4\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\forall x\Rightarrow A\ge-12\)

Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)