Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: |x - 1004| - |x + 1003| \(\le\) |x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN của A là 2007 khi x = -1013
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: A = |x - 1004| - |x + 1003| \(\le\)|x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN A = 2007 khi x = -1013
Xét biểu thức \(\left(3x+4\right)^4-5\). Có \(\left(3x+4\right)^4\) có số mũ chẵn
\(\left(3x+4\right)^4\ge0\) hay giá trị nhỏ nhất của \(\left(3x+4\right)^4=0\)
Từ đó có giá trị nhỏ nhất của \(\left(3x+4\right)^4-5=0-5=-5\)
Vậy giá trị nhỏ nhất của biểu thức \(\left(3x+4\right)^4-5\) là \(-5\)
Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)
\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)
Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8