Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
phần a các bn kia làm thiếu
(-3)2 cũng = 9
nên 2x-1 cũng có thể = -3
=> 2x - 1 = -3
=> 2x = -3 + 1
=> 2x = -2
=> x = -2 : 2
=> x = -1
vậy x = -1 hoặc x = 2
a) (2x-1)2=9
=> 2x-1=3
2x=3+1
2x=4
=> x=2
b) (x2-4)(2x+10)=0
\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x+10=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Vậy x=-5 hoặc x=2
c) (x-1)(x+3)<0
=> x-1 và x+3 trái dấu
TH1 : \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\) => vô lý
TH2: \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\Rightarrow-3< x< 1\)
=> x={-2,-1,0}
\(3^{x+4}=9^{2x-1}\)
\(\Rightarrow3^{x+4}=3^{4x-2}\)
\(\Rightarrow x+4=4x-2\)
\(\Rightarrow3x=6\Rightarrow x=2\)
1.
2|x-6|+7x-2=|x-6|+7x
2|x-6| - |x-6|=7x-(7x-2)
|x-6| = 2
=>x-6 = +2
*x-6=2 *x-6 = -2
x =2+6 x = (-2)+6
x =8 x = 4
2.
|x-5|-7(x+4)=5-7x
|x-5|-7x-28 =5-7x
|x-5|-28 =5-7x+7x
|x-5|-28 = 5
|x-5| = 5+28
|x-5| = 33
=>x-5 = +33
*x-5=33 *x-5=-33
x =38 x = -28
3.
3|x+4|-2(x-1)=7-2x
3|x+4|-2x+2 =7-2x
3|x+4|-2 =7-2x+2x
3|x+4|-2 =7
3|x+4| =7+2
3|x+4| = 9
|x+4| =9:3
|x+4| = 3
=>x+4 = +3
*x+4=3 *x+4=-3
x =-1 x = -7
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
a) \(\left(x-5\right).x=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=0\end{cases}}\)
Vậy....
b) \(\left(x-2\right)\left(1-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\1-x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy...
c) \(\left(x+1\right)\left(x^2+4\right)=0\)
Ta thấy \(x^2\ge0\) \(\forall x\)
nên \(x^2+4>0\)
\(\Rightarrow\)\(x+1=0\)
\(\Leftrightarrow\)\(x=-1\)
Vậy...
d) \(\left(2x-4\right)\left(9-3x\right)=0\)
\(\Leftrightarrow\)\(6\left(x-2\right)\left(3-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy....
a)\(\orbr{\begin{cases}x-5=0\\x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
b)\(\orbr{\begin{cases}x-2=0\\1-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x^2+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^2=-4\end{cases}}}\Leftrightarrow x=-1\)( DO \(x^2\ge0\)mà\(4\le0\))
d)\(\orbr{\begin{cases}2x-4=0\\9-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)