K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

a\(^n+2a^n\)+1+5a\(^n\)-4a\(^n\)+1

=(a\(^n-2a^n+5a^n-4a^n\))+(1+1)

=(-a\(^n+a^n\))+2

=2

vậy \(a^n-2a^n+1+5a^n-4a^n+1=2\)

25 tháng 4 2017

mơn bạnhaha

21 tháng 10 2017

(5x-4)n=1

=> \(\sqrt[n]{1}=1\)

=> 5x-4 = 1

5x = 1+4

5x = 5

x = 5:5

x = 1

(8x-1)2n+1 = 52n+1

\(\sqrt[2n+1]{5^{2n+1}}=5\)

=> 8x-1 = 5

8x = 5+1

8x = 6

x = 6:8

x = 3/4

5 tháng 4 2016

tích mình đi rùi mình giải

5 tháng 4 2016

mk chi tim dc 1 nghiem la x=0

k biet con nghiem nao k

29 tháng 6 2018

(1/2)^m = 1/32

mà 1/32 = (1/2)^5 nên m = 5

343/125= (7/5)^n

mà 343/125 = (7/5)^3 nên n=3

12 tháng 3 2020

\(\left(x^n\right)^{^2}=x^6\)(\(x\ne0;1\))

\(\Leftrightarrow x^{2n}=x^6\)

\(\Leftrightarrow2n=6\)

\(\Leftrightarrow n=3\)

12 tháng 3 2020

(xn)2=x6

x2n=26

 2n=6

   n=6:2

   n=3

Vậy n=3

15 tháng 2 2018

Ta có \(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\)

\(\Rightarrow\left(x+2\right)^{n+1}-\left(x+2\right)^{n+11}=0\)

\(\Rightarrow\left(x+2\right)^{n+1}.\left[1-\left(x+2\right)^{10}\right]=0\)

\(\Rightarrow\left(x+2\right)^{n+1}=0\)hoặc \(1-\left(x+2\right)^{10}=0\)

Với \(\left(x+2\right)^{n+1}=0\Rightarrow x+2=0\Rightarrow x=-2\)

Với \(1-\left(x+2\right)^{10}=0\Rightarrow\left(x+2\right)^{10}=1\Rightarrow\orbr{\begin{cases}x+2=1\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}}\)

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

14 tháng 6 2016

              \(A=3+3^2+3^3+...+3^{100}\)

      \(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)

      \(\Rightarrow2A=3^{101}-3\)

      Ta có:

           \(2A+3=3n\)

\(3^{101}-3+3=3n\)

                \(3^{101}=3n\) 

                      \(n=3^{101}:3\)

                      \(n=3^{100}\)

14 tháng 6 2016

\(3A=3^2+3^3+3^4+....+3^{101}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+3^4+....+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\frac{3^{101}-3}{2}\)

thay \(A=\frac{3^{101}-3}{2}\)vào 2A + 3 = 3n ta được

\(2.\frac{3^{101}-3}{2}+3=3n\)

\(3^{101}-3+3=3n\)

\(3^{101}=3n=>n=3^{101}:3=3^{100}\)

21 tháng 6 2017

kb nha Nguyễn Thiên Kim