Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
3x + 3x+1 + 3x+2 + 3x+3 = 360
<=> 3x + 3x.3 + 3x.32 + 3x.33 = 360
<=> 3x( 1 + 3 + 32 + 33 ) = 360
<=> 3x.40 = 360
<=> 3x = 9
<=> 3x = 32
<=> x = 2
1) Ta có\(\frac{x+2}{5}=\frac{1}{x-2}\)
=> (x + 2)(x - 2) = 5
=> x2 + 2x - 2x - 4 = 5
=> x2 - 4 = 5
=> x2 = 9
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
2) \(\frac{3}{x-4}=\frac{x+4}{3}\)
=> (x - 4)(x + 4) = 9
=> x2 + 4x - 4x - 16 = 9
=> x2 - 16 = 9
=> x2 = 25
=> \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
a, \(\frac{x+2}{5}=\frac{1}{x-2}ĐK:x\ne2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{5\left(x-2\right)}=\frac{5}{5\left(x-2\right)}\Leftrightarrow\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^2-2x+2x-4=5\Leftrightarrow x^2=9\Leftrightarrow x\pm3\)
b, \(\frac{3}{x-4}=\frac{x+4}{3}ĐK:x\ne4\)
\(\Leftrightarrow\frac{9}{\left(x-4\right)3}=\frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)}\Leftrightarrow9=x^2-4x+4x-16\)
\(\Leftrightarrow x^2-16=9\Leftrightarrow x^2=25\Leftrightarrow x=\pm5\)
c, \(\frac{x+2}{x+6}=\frac{3}{x}=1ĐK:x\ne0;-6\)
Xét : \(\frac{x+2}{x+6}=1\Leftrightarrow x+2=x+6\Leftrightarrow-4\ne0\)
Xét : \(\frac{3}{x}=1\Leftrightarrow3=x\)
Để giải phương trình (x+3)^2 = (x+3)(x-3), bạn có thể làm như sau:
1. Mở ngoặc trái phải của phần bên phải (x+3)(x-3):
(x+3)^2 = x^2 - 3x + 3x - 9
2. Rút gọn các thành phần:
(x+3)^2 = x^2 - 9
3. Khi đó, phương trình trở thành:
x^2 + 6x + 9 = x^2 - 9
4. Loại bỏ x^2 ở hai bên:
6x + 9 = -9
5. Trừ 9 từ hai bên:
6x = -9 - 9
6. Tổng hợp các thành phần:
6x = -18
7. Chia hai bên cho 6 để giải x:
x = -18/6
x = -3
Vậy giá trị của x là -3.
\(\left(x+3\right)^2=\left(x+3\right)\left(x-3\right)\)
\(\Leftrightarrow\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right).6=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)