Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toán lớp 7 đấy không phải lớp 10 đâu ! Giups mình với nhé !
Ta có \(a=1>0\) ; \(-\frac{b}{2a}=1\)
\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;1\right)\)
Mà \(-2^{2017}>-3^{2017}\Rightarrow f\left(-2^{2017}\right)< f\left(-3^{2017}\right)\)
a) \(\left(2^{2016}+2^{2017}+2^{2018}\right):\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=\dfrac{2^{2016}+2^{2017}+2^{2018}}{2^{2014}+2^{2015}+2^{2016}}\)
\(=\dfrac{2^{2016}\left(1+2+2^2\right)}{2^{2014}\left(1+2+2^2\right)}\)
\(=\dfrac{2^{2016}}{2^{2014}}\)
\(=2^{2016-2014}\)
\(=2^2\)
\(=4\)
b)
\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)
Vì \(243< 343\)
Nên \(243^{100}< 343^{100}\)
Vậy \(3^{500}< 7^{300}\)
tthấy cách này dễ hơn :
(22016+22017+22018):(22014+22015+22016)
=22016.(1+2+22):22014.(1+2+22)
=(22016.7)+(22014.7)
=22
=4
\(\sqrt{x+2017}-y^3=\sqrt{y+2017}-x^3\)
\(\Leftrightarrow\left(\sqrt{x+2017}-\sqrt{y+2017}\right)+\left(x^3-y^3\right)=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{1}{\sqrt{x+2017}+\sqrt{y+2017}}+\left(x^2+xy+y^2\right)\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow P=x^2-3x^2+12x-x^2+2018\)
\(=-3x^2+12x+2018=2030-3\left(x-2\right)^2\le2030\)
7x-1 - 3 . 76 = 22 . 76
7x : 71 - 3 . 76 = 22 . 76
7x : 7 - 3 . 117649 = 4 . 117649
7x : 7 - 3 . 117649 = 470596
7x : 7 - 3 = 470596 : 117649
7x : 7 - 3 = 4
7x : 7 = 4 + 3
7x : 7 = 7
7x = 7 . 7
7x = 49
7x = 72
=> x = 2
Vậy x = 2
\(x^{2017}=x^{2016}\)
\(\Leftrightarrow x^{2017}-x^{2016}=0\)
\(\Leftrightarrow x^{2016}\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^{2016}=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy x = 0 hoặc x = 1