K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-3=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-3=0\)

Đặt t=x2 + 5x+5

<=> (t-1)(t+1)-3=0

<=> t2=\(\left(\pm2\right)^2\)

=> t=-2 hoặc t=2

Thay vào bt trên ,ta thấy phương trinh vô nghiệm

Vậy phương trình vô nghiệm

(p/s : bài này làm rồi mà máy lắc quá, lần này là lần 2 nên tóm gọn )

29 tháng 6 2017

cảm ơn sky nhoa

20 tháng 8 2019

Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.

Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath

26 tháng 2 2016

nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0

15 tháng 7 2017

CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)

5 tháng 8 2020

Với a; b ; c  khác 0

Ta có: 

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}\)(1)

Áp dụng dãy tỉ số bằng nhau: 

\(\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\)(2)

\(\frac{ax}{a^2}=\frac{by}{b^2}=\frac{cz}{c^2}=\frac{ax+by+cz}{a^2+b^2+c^2}\)(3)

Từ (1) ; (2) ; (3) 

=> \(\frac{ax+by+cz}{a^2+b^2+c^2}\)\(=\frac{x^2+y^2+z^2}{ax+by+cz}\)

=> \(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)

5 tháng 8 2020

Do: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) => \(\frac{x}{a}=\frac{y}{b};\frac{y}{b}=\frac{z}{c};\frac{z}{c}=\frac{x}{a}\)

<=> \(ay=bx;bz=cy;az=cx\)

<=> \(\left(ay-bx\right)=0;bz-cy=0;az-cx=0\)

<=> \(\left(ay-bx\right)^2+\left(yc-bz\right)^2+\left(az-cx\right)^2=0\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2=2abxy+2bcyz+2cazx\)

<=> \(a^2y^2+b^2x^2+y^2c^2+b^2z^2+a^2z^2+c^2x^2+a^2x^2+b^2y^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2cazx\)<=> \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

=> Ta có ĐPCM

24 tháng 10 2019

Từ giả thiết 
x^2 - yz = a 
y^2 - zx = b 
z^2 - xy = c 
ta suy ra 
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau); 
và 
x^3 - xyz = ax 
y^3 - xyz = by 
z^3 - xyz = cz. 
Cộng các đẳng thức theo vế, ta được 
x^3 + y^3 + z^3 - 3xyz = ax + by + cz. 
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại 
(x + y + z)(a + b + c) = ax + by + cz. 
Suy ra ax + by + cz chia hết cho a + b + c. 

24 tháng 10 2019

bài này dùng chia hết thôi 

23 tháng 8 2016

Ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)  

=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)  

Mặt khác ta có:

x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)  

=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)  

Từ (1) và (2) ta

=> (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)  

=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2

=> đpcm