Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)
\(\Rightarrow\left[3\left(x+1\right)+8\right]⋮\left(x+1\right)\\ \Rightarrow x+1\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Rightarrow x\in\left\{-9;-5;-3;-2;0;1;3;7\right\}\)
Ta có :
\(x+3⋮x-1\)
\(x-1⋮x-1\)
\(\left(x+3\right)-\left(x-1\right)⋮x-1\)
\(x+3-x+1⋮x-1\)
\(4⋮x-1\)
\(\Rightarrow x+1\in\text{Ư}\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)
Câu 1:
25 - 4.( -x - 1 ) + 3.(5x) = -x + 34
=> 25 + 4x + 4 + 15x = -x + 34
=> (25 + 4) + (4x + 15x) = -x + 34
=> 29 + 19x = -x + 34
=> 19x + x = 34 - 29
=> 20x = 5
=> x = \(\frac{1}{4}\)(T/m)
Vậy x =\(\frac{1}{4}\)
Câu 2:
Ta có: 11\(⋮\)2x - 1
=> 2x - 1 \(\in\)Ư(11) = \(\left\{\pm1;\pm11\right\}\)
=> 2x \(\in\){2; 0; 12; -10}
=> x \(\in\){1; 0; 6; -5} (T/m)
Vậy x \(\in\){1; 0; 6; -5}
Câu 3:
Ta có: x + 12 \(⋮\)x - 2
=> x - 2 + 14 \(⋮\) x - 2
Mà x - 2 \(⋮\) x - 2
=> 14 \(⋮\) x - 2
=> x - 2 \(\in\)Ư(14) = \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
=> x \(\in\){3; 1; 4; 0; 9; -5; 16; -12} (T/m)
Vậy x \(\in\){3; 1; 4; 0; 9; -5; 16; -12}
Câu 4:
Ta có: 3x + 17 \(⋮\)x + 3
=> 3x + 9 + 8 \(⋮\)x + 3
=> 3(x + 3) + 8 \(⋮\)x + 3
Mà 3(x + 3) \(⋮\)x + 3
=> 8 \(⋮\)x + 3
=> x + 3\(\in\)Ư(8) =\(\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
=> x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11} (T/m)
Vậy x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11}
C2:
11 chia hết cho 2x—1
==> 2x—1 € Ư(11)
==> 2x—1 € { 1;-1;11;-11}
Ta có:
TH1: 2x—1=1
2x=1+1
2x=2
x=2:2
x=1
TH2: 2x—1=—1
2x=-1+1
2x=0
x=0:2
x=0
TH3: 2x—1=11
2x=11+1
2x=12
x=12:2
x=6
TH4: 2x—1=-11
2x=-11+1
2x=—10
x=-10:2
x=—5
Vậy x€{1;0;6;—5}
C3: x+12 chia hết cho x—2
==> x—2+14 chia hết cho x—2
Vì x—2 chia hết cho x—2
Nên 14 chia hết cho x—2
==> x—2 € Ư(14)
==> x—2 €{ 1;-1;2;-2;7;-7;14;-14}
Ta có:
TH1: x—2=1
x=1+2
x=3
TH2: x—2=-1
x=-1+2
x=1
TH3: x—2=2
x=2+2’
x=4
TH4: x—2=—2
x=—2+2
x=0
TH5: x—2=7
x=7+ 2
x=9
TH6:x—2=—7
x=—7+ 2
x=—5
TH7: x—2=14
x=14+2
x=16
TH8: x—2=-14
x=-14+2
x=-12
Vậy x€{3;1;4;0;9;—5;16;-12}
Ta có :\(\hept{\begin{cases}-2x-11:3x+2\\3x+2:3x+2\end{cases}}\)\(\implies\)\(\hept{\begin{cases}3.\left(-2x-11\right):3x+2\\2\left(3x+2\right):3x+2\end{cases}}\) \(\implies\) \(\hept{\begin{cases}-6x-33:3x+2\\6x+4:3x+2\end{cases}}\)
\(\implies\) \(-6x-33+6x+4:3x+2\)
\(\implies\) \(-29:3x+2\)
\(\implies\) \(3x+2\) \(\in\) Ư(-29)=\(\{\)\(1;-1;29;-29\) \(\}\)
\(\implies\) \(x\) \(\in\) \(\{\) \(-1;9\)\(\}\)
b2
P=4a^2 + 4a =4(a^2 + a)=4.[a.a + a]=4[a.(a+1)]
Mà a và a+1 là 2 số nguyên liên tiếp nên tích 2 số này chia hết cho 2
Đặt a(a+1)=2.k ( k thuộc Z)
Suy ra: P=4.2k=8k chia hết cho 8
k ch mình nha
x + 7 \(⋮\) x + 5 <=> (x + 5) + 2 \(⋮\) x + 5
=> 2 \(⋮\) x + 5 (vì x + 5 \(⋮\) x + 5)
=> x + 5 ∈ Ư(2) = {1; -1; 2; -2}
x + 5 = 1 => x = -4
x + 5 = -1 => x = -6
x + 5 = 2 => x = -3
x + 5 = -2 => x = -7
Vậy x ∈ {-4; -6; -3; -7}
x+7 ⋮ x+5
=> (x+5) + 2 ⋮ x+5
x+5 ⋮ x+5
=> 2 ⋮ x+5
=> x+5 ∈ Ư(2)
x ∈ Z => x+5 ∈ Z
=> x + 5 ∈ {-1;-2;1;2}
=> x ∈ {-6;-7;-4;-3}
vậy x ∈ {-7;-6;-4;-3}
\(x+7⋮x-3\\ \Rightarrow\left(x+7\right)-\left(x-3\right)⋮x-3\\ \Rightarrow10⋮x-3\\ \Rightarrow x-3\in\left\{\pm10;\pm5;\pm2;\pm1\right\}\\ \Rightarrow x\in\left\{13;-7;8;-2;5;1;4;2\right\}\)