Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
a) Ta có : x - 2y = 0
=> x = 2y
Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5
= 8y2 - 2y2 - 6y2 - 4y3 + 4y3 + 5
= 5
Vậy giá trị của A khi x - 2y = 0 là 5
b)Thay 11 = x - y vào biểu thức B ta có
\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)
Vậy giá trị của B khi x - y = 11 là 0
Bài 2
a. (x-2y)2 =2x-4y
b. (2x^2 +3)2 =4x^2+6
c. (x-2) (x^2+2x+4) = x^3-8 (hằng đẳng thức)
d. (2x-1)3 = 6x-3
Xin lỗi mik chỉ lm ổn bài 2 thôi!
Bài 7
\(a,A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
\(b,B=x^2-x+1\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\)
\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)
\(=t^2-36\)
\(\left(x^2+5x\right)^2-36\ge36\forall x\)
\(d,D=x^2+5y^2-2xy+4y-3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)
Ta có:
A = (x + 2)2 + (x - 3)2 = x2 + 4x + 4 + x2 - 6x + 9 = 2x2 - 2x + 13 = 2(x2 - x + 1/4) + 25/2 = 2(x - 1/2)2 + 25/2
Ta luôn có: (x - 1/2)2 \(\ge\) 0 \(\forall\)x ----> 2(x - 1/2)2 \(\ge\) 0 \(\forall\)x
=> 2(x - 1/2)2 + 25/2 \(\ge\) 25/2 \(\forall\)x
Dấu "=" xảy ra khi: (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2
Vậy Amin = 25/2 tại x = 1/2
B = x2 - 4x + y2 - 8y + 6 = (x2 - 4x + 4) + (y2 - 8y + 16) - 14 = (x - 2)2 + (y - 4)2 - 14
Ta luôn có: (x - 2)2 \(\ge\)0 \(\forall\)x
(y - 4)2 \(\ge\)0 \(\forall\)y
=> (x - 2)2 + (y - 4)2 - 14 \(\ge\) -14 \(\forall\)x,y
hay B \(\ge\)-14 \(\forall\)x, y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}x-2=0\\x-4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy Bmin = -14 tại x = 2 và y = 4
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\left(10x+3\right):8=\left(7-8x\right):12\)
\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)
\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)
\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)
\(\frac{23}{12}x=\frac{5}{24}\)
\(x=\frac{5}{46}\)
E mới lớp 6 nên giải sai thì thông cảm ạ UwU
\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)
\(< =>\frac{x}{45}=\frac{32}{45}\)
\(< =>x=32\)
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)
\(< =>120x+36=56-64x\)
\(< =>184x=56-36=20\)
\(< =>x=\frac{20}{184}=\frac{5}{46}\)
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
C
\(\Rightarrow x^2-16-x^2+3x=5\)
\(\Rightarrow3x=21\Rightarrow x=7\)
=> Chọn A