Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x^2 + 5x = 0
=> x(2x + 5) = 0
=> x = 0 hoặc 2x + 5 = 0
=> x = 0 hoặc x = -5/2
b. x^2 - 1 = 0
=> (x - 1)(x + 1) = 0
=> x - 1 = 0 hoặc x + 1 = 0
=> x = 1 hoặc x - -1
Chỉ ra 1 nghiệm của đa thức đúng không
Giả sử d là 1 nghiệm của đa thức thì:
\(\Rightarrow\)f(x) = (x - d)(x2 + mx + n)
= x3 + (m - d)x2 + (n - dm)x - dn = x3+ax2+bx+c
Đồng nhất thức 2 vế ta được
m - d = a; n - dm = b; -dn = c
Thế vào điều kiện đề bài ta được
m - d + 2(n - dm) - 4dn = - 0,5
\(\Leftrightarrow\)2d( 4n + 2m + 1) = (4n + 2m + 1)
\(\Leftrightarrow\)(4n + 2m + 1)(2d - 1) = 0
(Ta không cần quan tâm đến (4n + 2m + 1) vì mục đích ta tìm d thôi)
\(\Rightarrow2d-1=0\)
\(\Leftrightarrow d=\frac{1}{2}\)
Vậy đa thức có 1 nghiệm là \(\frac{1}{2}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Rightarrow x=\left\{1;0\right\}\)
b) Xét 2 trường hợp
+ TH1: \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}}\)=> \(x< -\frac{2}{3}\)thỏa mãn đề bài
+ TH2: \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}}\)=> x > 2 thỏa mãn đề bài
Vậy \(\orbr{\begin{cases}x< -\frac{2}{3}\\x>2\end{cases}}\)thỏa mãn đề bài
\(\left|x-\frac{5}{2}\right|+\frac{1}{6}=\frac{2}{3}\)
\(\left|x-\frac{5}{2}\right|=\frac{2}{3}-\frac{1}{6}\)
\(\left|x-\frac{5}{2}\right|=\frac{1}{2}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-\frac{5}{2}=\frac{1}{2}\\x-\frac{5}{2}=-\frac{1}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3\\x=2\end{array}\right.\)
<=>|x-5/2|=2/3-1/6=1/2
=> x-5/2 =1/2 hoặc x-5/2=-1/2
* x-5/2=1/2<=>x=1/2+5/2=3
*x-5/2=-1/2<=>x=-1/2+5/2=2