Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính chất của phân số bạn cần biết như sau:
\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)
Gọi biểu thức trên là A ,ta có:
\(A=\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+\dfrac{1}{13\cdot17}+\dfrac{1}{17\cdot21}+\dfrac{1}{21\cdot25}\)
\(4A=\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+\dfrac{4}{13\cdot17}+\dfrac{4}{17\cdot21}+\dfrac{4}{21\cdot25}\)
\(4A=\dfrac{9-5}{5\cdot9}+\dfrac{13-9}{9-13}+\dfrac{17-13}{13\cdot17}+\dfrac{21-17}{17\cdot21}+\dfrac{25-21}{21\cdot25}\)
Áp dụng tính chất phân số đã nêu ở trên, ta được:
\(4A=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{25}\)
\(4A=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{5}{25}-\dfrac{1}{25}=\dfrac{4}{25}\)
\(A=4A:4=\dfrac{4}{25}:4=\dfrac{16}{25}\)
Vậy \(A=\dfrac{16}{25}\)
\(\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{21.25}\\ =\dfrac{4\cdot\dfrac{1}{4}}{5.9}+\dfrac{4\cdot\dfrac{1}{4}}{9.13}+...+\dfrac{4\cdot\dfrac{1}{4}}{21.25}\\ =\dfrac{1}{4}\left(\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{21.25}\right)\\ =\dfrac{1}{4}\cdot\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{21}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{25}\right)=\dfrac{1}{4}\left(\dfrac{5}{25}-\dfrac{1}{25}\right)\\ =\dfrac{1}{4}\cdot\dfrac{4}{25}=\dfrac{1}{25}\)
`1/(5.9) + 1/(9.13) + ...+ 1/(21.25)`
`= 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/21 - 1/25`
`= 1/5 - 1/25`
`= 4/25`
\(x+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{41.45}=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{44}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\dfrac{8}{45}=-\dfrac{37}{45}\\ x=-\dfrac{37}{45}-\dfrac{8}{45}\\ x=-1\)
a: \(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{121}-\dfrac{1}{124}=1-\dfrac{1}{124}=\dfrac{123}{124}\)
b: \(=3\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)=3\cdot\dfrac{99}{202}=\dfrac{297}{202}\)
c: \(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{401}-\dfrac{1}{405}\right)=\dfrac{1}{4}\cdot\dfrac{404}{405}=\dfrac{101}{405}\)
d: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
b)\(\dfrac{1}{7}B=\dfrac{1}{10.18}+\dfrac{1}{18.26}+\dfrac{1}{26.34}+...+\dfrac{1}{802.810}\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{8}{10.18}+\dfrac{8}{18.26}+\dfrac{8}{26.34}+...+\dfrac{8}{802.810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{34}+...+\dfrac{1}{802}-\dfrac{1}{810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{810}\right)\)
\(\dfrac{1}{7}B=\dfrac{1}{8}.\dfrac{8}{81}\)
\(\dfrac{1}{7}B=\dfrac{1.8}{8.81}\)
\(\dfrac{1}{7}B=\dfrac{1}{81}\)
\(B=\dfrac{1}{81}:\dfrac{1}{7}\)
\(B=\dfrac{7}{81}\)
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Ta có : \(\left(x-1\right)^2+\dfrac{1}{5.9}+\dfrac{1}{9.13}+...+\dfrac{1}{41.45}=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=\dfrac{49}{900}\)
\(\Leftrightarrow\left(x-1\right)^2=\dfrac{1}{100}\) \(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{10}\\x-1=-\dfrac{1}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{10}\\x=\dfrac{9}{10}\end{matrix}\right.\)
Vậy ...