Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c)\) \(\left|2x-1\right|-2x=3\)
\(\Leftrightarrow\)\(\left|2x-1\right|=2x+3\)
Ta có : \(\left|2x-1\right|\ge0\)
\(\Rightarrow\)\(2x+3\ge0\)\(\Rightarrow\)\(2x\ge-3\)\(\Rightarrow\)\(x\ge\frac{-3}{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=2x+3\\2x-1=-2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-2x=3+1\\2x+2x=-3+1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}0=4\\4x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}0=4\left(loai\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(b)\) \(3\left(2x-1\right)-\left|x-5\right|=7\)
\(\Leftrightarrow\)\(3\left(2x-1\right)-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(6x-3-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(\left|x-5\right|=6x-10\)
Ta có : \(\left|x-5\right|\ge0\)
\(\Rightarrow\)\(6x-10\ge0\)\(\Rightarrow\)\(6x\ge10\)\(\Rightarrow\)\(x\ge\frac{5}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=6x-10\\x-5=10-6x\end{cases}\Leftrightarrow\orbr{\begin{cases}6x-x=-5+10\\x+6x=10+5\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=5\\7x=15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=\frac{15}{7}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{15}{7}\)
Chúc bạn học tốt ~
a: Trường hợp 1: x<-2
Pt sẽ là -x-2+3-2x=5
=>-3x+1=5
=>-3x=4
hay x=-4/3(loại)
Trường hợp 2: -2<=x<3/2
Pt sẽ là x+2+3-2x=5
=>5-x=5
hay x=0(nhận)
Trường hợp 2: x>=3/2
Pt sẽ là x+2+2x-3=5
=>3x-1=5
hay x=2(nhận)
b: \(\Leftrightarrow\left|x-5\right|=6x-3-7=6x-10\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{3}\\\left(6x-10-x+5\right)\left(6x-10+x-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{3}\\\left(5x-5\right)\left(7x-15\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{15}{7}\)
c: \(\Leftrightarrow\left|2x-1\right|=2x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{2}\\\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)=0\end{matrix}\right.\Leftrightarrow x=-\dfrac{1}{2}\)
d: =>|3x-2|=3x-2
=>3x-2>=0
hay x>=2/3
a) vì | x + \(\frac{5}{3}\)| \(\ge\)0 nên A = | x + \(\frac{5}{3}\)| + 112 \(\ge\)112
dấu " = " xảy ra khi | x + \(\frac{5}{3}\)| = 0 hay x = \(\frac{-5}{3}\)
\(\Rightarrow\)GTNN của A là 112 khi | x + \(\frac{5}{3}\) | = 0 hay x = \(\frac{-5}{3}\)
b) B = | x - 2,7 | + | x + 8,5 |
B = | 2,7 - x | + | x + 8,5 | \(\ge\)| 2,7 - x + x + 8,5 | = 11,2
\(\Rightarrow\)GTNN của B là 11,2 khi ( 2,7 - x ) . ( x + 8,5 ) \(\ge\)0 hay -8,5 \(\le\)x \(\le\)2,7
c) C = \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|2x+\frac{1}{4}\right|\)
C = \(\left|x+\frac{1}{2}\right|+\left|-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|\)\(\ge\)\(\left|x+\frac{1}{2}-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|=\frac{1}{6}+\left|2x+\frac{1}{4}\right|\ge\frac{1}{6}\)
\(\Rightarrow\)GTNN của C là \(\frac{1}{6}\)khi \(\hept{\begin{cases}2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\\\left(x+\frac{1}{2}\right).\left(-\frac{1}{3}-x\right)\ge0\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{3}\end{cases}}\)
1) Ta có \(\hept{\begin{cases}\left|x\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x\right|+\left|y-2\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy x = 0 ; y = 2
Thay x = 0 ; y = 2 vào B
=> B = 2.0 - 5.2 + 7.0.2 = -10
Vậy B = -10
Bài 2:
\(a)\)
\(A=\left|x-2021\right|+5\)
Ta có:
\(\left|x-2021\right|\ge0\Rightarrow\left|x-2021\right|+5\ge5\)
Dấu '' = '' xảy ra khi:
\(x-2021=0\)
\(\Leftrightarrow x=2021\)
Vậy \(MinA=5\Leftrightarrow x=2021\)
\(b)\)
\(B=\left|x-2\right|+\left|x-5\right|\)
\(B=\left|x-2\right|+\left|x-5\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)
Dấu '' = '' xảy ra khi:
\(\left(x-2\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow2\le x\le5\)
Vậy \(MinB=3\Leftrightarrow2\le x\le5\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow x-\frac{1}{3}=2\text{ hoặc }x-\frac{1}{3}=-2\)
\(\Rightarrow x=\frac{7}{3}\text{ hoặc }x=-\frac{5}{3}\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>|x−13 |+45 =|−3,2+25 |
⇒|x−13 |+45 =145
⇒|x−13 |=2
⇒x−13 =2 hoặc x−13 =−2