K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2016

Tìm  x biết : \(\left|x-2\right|+\left|2x-3\right|=5\)

\(=>\hept{\begin{cases}x=7\\x=4\end{cases}}\)

tìm giá trị nhỏ nhất của biểu thức : 

\(A=\left|x-102\right|+\left|2-x\right|\)

nếu \(\hept{\begin{cases}x-102=0\\2-x=0\end{cases}}\)thì =>\(\hept{\begin{cases}x=102\\2\end{cases}}\)

nếu thấy đúng k nha

11 tháng 12 2023

Câu 2:

a: 10km=10000m

10000m dây đồng có cân nặng là:

\(47:5\cdot10000=94000\left(g\right)\)

b: 300g=0,3kg=0,003 tạ

0,003 tạ nặng:

\(2,5:1\cdot0,003=\dfrac{3}{400}\left(kg\right)\)

Câu 1:

a:

\(\left|1-2x\right|>=0\forall x\)

=>\(3\left|1-2x\right|>=0\forall x\)

=>\(3\left|1-2x\right|-5>=-5\forall x\)

=>\(A>=-5\forall x\)

Dấu '=' xảy ra khi 1-2x=0

=>2x=1

=>x=1/2

Vậy: \(A_{Min}=-5\) khi x=1/2

b: \(2x^2>=0\forall x\)

=>\(2x^2+1>=1\forall x\)

=>\(\left(2x^2+1\right)^4>=1^4=1\forall x\)

=>\(\left(2x^2+1\right)^4-3>=1-3=-2\forall x\)

=>B>=-2\(\forall\)x

Dấu '=' xảy ra khi x=0

c: \(\left|x-\dfrac{1}{2}\right|>=0\forall x\)

\(\left(y+2\right)^2>=0\forall y\)

Do đó: \(\left|x-\dfrac{1}{2}\right|+\left(y+2\right)^2>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+2=0\end{matrix}\right.\)

=>x=1/2 và y=-2

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

9 tháng 2 2020

Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0

vì vậy min của T =0

9 tháng 2 2020

\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)

\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)

\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)

\(\Rightarrow T\ge|43|\)

\(\Rightarrow T\ge43\)

Vậy \(Min_T=43\)

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3

22 tháng 5 2021

M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021

=  |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021

=  |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021

= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021 

Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)

=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)

Khi (x - 2020)(x2 - 16) = 0 

=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)

Khi 2(x - 4)2 = 0

=> x -  4 = 0

=> x = 4 (2)

Từ (1) (2) => x = 4 

Vậy Min M = 2021 <=> x = 4