Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+2}{98}+\frac{x+4}{96}+\frac{x+6}{94}\)
\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+6}{94}+1\right)\)
\(\left(\frac{x+1}{99}+\frac{99}{99}\right)+\left(\frac{x+3}{97}+\frac{97}{97}\right)+\left(\frac{x+5}{95}+\frac{95}{95}\right)=\left(\frac{x+2}{98}+\frac{98}{98}\right)+\left(\frac{x+4}{96}+\frac{96}{96}\right)+\left(\frac{\left(x+6\right)}{94}+\frac{94}{94}\right)\)
\(\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{92}+\frac{x+100}{94}+\frac{x+100}{96}\)
\(\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}-\frac{x+100}{92}-\frac{x+100}{94}-\frac{x+100}{96}=0\)
\(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{92}-\frac{1}{94}-\frac{1}{96}\right)=0\)
\(Mà\) \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{92}-\frac{1}{94}-\frac{1}{96}\ne0\)
Nên x+ 100 = 0
x = 0 - 100 = -100
Vậy x= -100
cộng 1 vào mỗi tỉ số,ta được:
\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+6}{94}+1\right)\)\(\Rightarrow\frac{x+1+99}{99}+\frac{x+3+97}{97}+\frac{x+5+95}{95}=\frac{x+2+98}{98}+\frac{x+4+96}{96}+\frac{x+6+94}{94}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{98}+\frac{x+100}{96}+\frac{x+100}{94}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}-\frac{x+100}{98}-\frac{x+100}{96}-\frac{x+100}{94}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{98}-\frac{1}{96}-\frac{1}{94}\right)\)
Vì \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{98}-\frac{1}{96}-\frac{1}{94}\ne0\)
=>x+100=0
=>x=-100
Vậy x=-100
\(\frac{x-2}{99}+\frac{x-3}{98}=\frac{x-4}{97}+\frac{x-5}{96}\Leftrightarrow\frac{x-2}{99}-1+\frac{x-3}{98}-1=\frac{x-4}{97}-1+\frac{x-5}{96}-1\)
<=>\(\frac{x-101}{99}+\frac{x-101}{98}=\frac{x-101}{97}+\frac{x-101}{96}\)
<=>\(\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
<=>x-101=0 \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\right)\)
<=>x=101
Ta có :
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Leftrightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=-4+4\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)nên \(x+100=0\)
\(\Rightarrow x=0-100=-100\)
a, \(\frac{x+1}{5}+\frac{x+1}{7}=\frac{x+1}{9}\)
\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{7}-\frac{x+1}{9}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
b, \(\frac{x+4}{96}+\frac{x+3}{97}=\frac{x+2}{98}+\frac{x+1}{99}\)
\(\Leftrightarrow\left(\frac{x+4}{96}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+2}{98}+1\right)+\left(\frac{x+1}{99}+1\right)\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}=\frac{x+100}{98}+\frac{x+100}{99}\)
\(\Leftrightarrow\frac{x+100}{96}+\frac{x+100}{97}-\frac{x+100}{98}-\frac{x+100}{99}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{96}+\frac{1}{97}+\frac{1}{98}+\frac{1}{99}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
a) x + 1/5 + x + 1/7 = x + 1/9
<=> 1/5x + 1/5 + 1/7x + 1/7 = 1/9x + 1/9
<=> (1/5x + 1/7x) + (1/5 + 1/7) = 1/9x + 1/9
<=> 12/35x + 12/35 = 1/9x + 1/9
<=> 12/35x + 12/35 - 1/9x = 1/9
<=> 73/315x + 12/35 = 1/9
<=> 73/315x = 1/9 - 12/35
<=> 73/315x = -73/315
<=> x = 73/315 : -73/315 = -1
=> x = -1
b) làm tương tự
\(\frac{x+3}{97}+\frac{x+5}{95}+\frac{x+4}{96}+\frac{x+1}{99}=-4\)
\(\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+1}{99}+1\right)=-4+4\)
\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{96}+\frac{x+100}{99}=0\)
\(\left(x+100\right).\left(\frac{1}{97}+\frac{1}{95}+\frac{1}{96}+\frac{1}{99}\right)=0\)
=> \(\orbr{\begin{cases}x+100=0\\\frac{1}{97}+\frac{1}{95}+\frac{1}{96}+\frac{1}{99}=0\end{cases}}\)
Mà \(\frac{1}{97}+\frac{1}{95}+\frac{1}{96}+\frac{1}{99}\ne0\)
=> x + 100 = 0
=> x = -100
Vậy x = -100
Câu b trừ mỗi số đi 1 tức là trừ cả cụm đó cho 3 rùi lm tương tự câu a