Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Đặt \(A=\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{x+1}=\frac{1}{9}\)
Đến đây thì ez rùi nhé ^^
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
\(D=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{99.101}{100^2}\)
\(=\frac{1.2...99}{2.3...100}.\frac{3.4....101}{2.3....100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
1 b) Đặt A=\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{66}+\frac{1}{78}\)
=> \(\frac{A}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}+\frac{1}{156}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}\)
=> \(A=\frac{2}{3}-\frac{2}{13}\)\(=\frac{20}{39}\)
Ta có: \(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+...+\frac{x}{78}=\frac{220}{39}\)
<=> \(x\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{78}\right)=\frac{220}{39}\Leftrightarrow x.\frac{20}{39}=\frac{220}{39}\Leftrightarrow x=11\)
\(\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{2}{90}+\frac{2}{110}+\frac{2}{132}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)
\(2\left(\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)
\(2\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)
\(2\left(\frac{1}{9}-\frac{1}{\left(x+1\right)}\right)=\frac{1}{9}\)
\(\frac{1}{9}-\frac{1}{\left(x+1\right)}=\frac{1}{18}\)
\(\frac{1}{\left(x+1\right)}=\frac{1}{18}\)
\(x=17\)