Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a)
\(3(2x-\frac{1}{2})+2(\frac{3}{8}-x)=2,75\)
\(\Leftrightarrow 6x-\frac{3}{2}+\frac{3}{4}-2x=2,75\)
\(\Leftrightarrow 4x=\frac{7}{2}\Rightarrow x=\frac{7}{8}\)
b)
\(x-\frac{1}{3}(5-3x)=1\frac{1}{2}x+5\frac{1}{2}\)
\(\Leftrightarrow x-\frac{5}{3}+x=x+\frac{1}{2}x+\frac{11}{2}\)
\(\Leftrightarrow \frac{1}{2}x=\frac{43}{6}\) \(\Rightarrow x=\frac{43}{3}\)
c) \(\sqrt{x-1}=4\Rightarrow x-1=4^2\Rightarrow x=4^2+1=17\)
d)
\(|x|-5\frac{3}{7}|-x|-\frac{3}{4}=2|x|-1\frac{1}{7}\)
\(\Leftrightarrow |x|-\frac{38}{7}|x|-\frac{3}{4}=2|x|-\frac{8}{7}\)
\(\Leftrightarrow |x|(1-\frac{38}{7}-2)=\frac{3}{4}-\frac{8}{7}\)
\(\Leftrightarrow |x|.\frac{-45}{7}=\frac{-11}{28}\)
\(\Leftrightarrow |x|=\frac{11}{180}\Rightarrow \left[\begin{matrix} x=\frac{11}{180}\\ x=-\frac{11}{180}\end{matrix}\right.\)
1. Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) \(\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) \(\left(2\right)\)
Từ \(\left(1\right)\text{và (2)}\) \(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
2. \(\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|\ge0\\\left|\dfrac{2}{7}y+3\right|\ge0\end{matrix}\right.\Rightarrow\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|\ge0\)
\(\text{Mà }\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|=0\\\left|\dfrac{2}{7}y+3\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5-\dfrac{3}{4}x=0\\\dfrac{2}{7}y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{4}x=5\\\dfrac{2}{7}x=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)
3. \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}\)
\(\text{Mà }a-b=15\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}=\dfrac{a-b}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=30\Rightarrow a=30.2=60\\\dfrac{b}{\dfrac{3}{2}}=30\Rightarrow b=30.\dfrac{3}{2}=45\\\dfrac{c}{\dfrac{4}{3}}=30\Rightarrow c=30.\dfrac{4}{3}=40\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}a=60\\b=45\\c=40\end{matrix}\right.\)
5a.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)
b.
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)
a) Ta có : \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\\ x+2=0\Rightarrow x=-2\)
Lập bảng xét dấu:
x | -2 | \(\dfrac{1}{2}\) | |||
x + 2 | - | 0 | + | + | |
x - \(\dfrac{1}{2}\) | - | - | 0 | + |
TH : Xét x < -2
Ta có : - ( x+ 2) - (x - \(\dfrac{1}{2}\)) = \(\dfrac{3}{4}\)
-x - 2 -x + \(\dfrac{1}{2}\) = \(\dfrac{3}{4}\)
- 2x - 2 + \(\dfrac{1}{2}\)= \(\dfrac{3}{4}\)
-2x = 2\(\dfrac{1}{4}\)
=> x = \(-1\dfrac{1}{8}\) ( loại )
TH 2: \(-2\le x< \dfrac{1}{2}\)
Ta có : x + 2 + ( -x + \(\dfrac{1}{2}\)) = \(\dfrac{3}{4}\)
=> \(2,5=\dfrac{3}{4}\) ( loại )
TH3 : \(x\ge\dfrac{1}{2}\)
x+ 2 + x - \(\dfrac{1}{2}\) = \(\dfrac{3}{4}\)
2x + 1,5 = \(\dfrac{3}{4}\)
x = -0,375( loại )
vậy ....
b) \(\left(\dfrac{2}{3}-2x\right).1\dfrac{1}{2}=\dfrac{3}{4}\\ \Rightarrow\dfrac{2}{3}-2x=-\dfrac{3}{4}\\ \Rightarrow2x=1\dfrac{5}{12}\\ \Rightarrow x=\dfrac{17}{24}\)
c) \(\left|x-1\right|+2.\left(x+4\right)=10\\ \Rightarrow\left|x-1\right|=10-2x-8\\ \Rightarrow\left|x-1\right|=2-2x\)
TH1 : \(x-1\ge0\) \(\Rightarrow x\ge1\)
\(\Rightarrow x-1=2-2x\\ \Rightarrow3x=3\\ \Rightarrow x=1\left(TM\right)\)
TH2 : \(x-1< 0\Rightarrow x< 1\)
=> \(x-1=-2+2x\\ \Rightarrow-x=-1\Rightarrow x=1\)(loại)
Vậy x = 1
a) \(-5\cdot\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\cdot\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ -5\cdot x+1-\dfrac{1}{2}\cdot x-\dfrac{1}{3}=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ x\cdot\left(-5-\dfrac{1}{2}\right)+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{3}{2}\cdot x\\ x\cdot\dfrac{-11}{2}+\dfrac{7}{6}=\dfrac{3}{2}\cdot x\\ \dfrac{3}{2}\cdot x-\dfrac{-11}{2}\cdot x=\dfrac{7}{6}\\ x\cdot\left(\dfrac{3}{2}-\dfrac{-11}{2}\right)=\dfrac{7}{6}\\ x\cdot7=\dfrac{7}{6}\\ x=\dfrac{7}{6}:7\\ x=\dfrac{1}{6}\)
Vậy x = \(\dfrac{1}{6}\)
b, \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2^x\\ \dfrac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31}{2^{30}\cdot\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31\right)\cdot64}=2^x\\ \dfrac{1}{2^{30}\cdot2^6}=2^x\\ \dfrac{1}{2^{36}}=2^x\\ 2^{-36}=2^x\\ \Rightarrow x=-36\)
\(a.\)
\(1-\dfrac{1}{2}\left(\dfrac{3}{2}-2x\right)=4x-\dfrac{1}{4}\)
\(\Rightarrow1-\dfrac{3}{4}+x=4x-\dfrac{1}{4}\)
\(\Rightarrow1-\dfrac{3}{4}+\dfrac{1}{4}=4x-x\)
\(\Rightarrow3x=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{6}\)
\(b.\)
\(x^{10}=1024\)
\(\Rightarrow x^{10}=2^{10}\)
\(\Rightarrow x=2\)
\(c.\)
\(3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)