Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
a, Xét : x-4 = 0 => x= 4
2x+1 = 0 => x= \(\frac{1}{2}\)
x+3 = 0 => x = -3
x + 9 = 0 => x = -9
Khi đó ta có bảng xét dấu :
x | -9 | -3 | \(\frac{1}{2}\) | 4 |
x-4 | -13 | -7 | \(\frac{-7}{2}\) | 0 |
2x+1 | -17 | -5 | 2 | 9 |
x+3 | -6 | 0 | \(\frac{7}{2}\) | 7 |
x+9 | 0 | 6 | \(\frac{19}{2}\) | 13 |
=> có 5 trường hợp:
TH1 : \(x\le-9\)
TH2 : \(-9\le x< -3\)
TH3 : \(-3\le x< \frac{1}{2}\)
TH4 : \(\frac{1}{2}\le x< 4\)
Do đó :
TH1 : \(x\le-9\)
Ta có : /x-4/ = -(x-4) = 4 - x
/2x+1/ = -(2x+1) = -2x -1
/x+3/ = -(x + 3 ) = -x - 3
/x-9/ = -(x-9) = -x + 9 Thay vào đề bài ta có:
3.(4-x) + 2x-1 +5(-x - 3) -x-9 = 5
=> 12 - 3x + 2x - 1 + -5x - 15 - x - 9 = 5
=>(12 - 1 - 15 -9 ) +(-3x +2x -5x -x) = 5
=> -13 - 7x = 5
7x = -13 - 5
7x = -18
x = \(\frac{-18}{7}\)( Ko TM)
Tương tự với 4 trường hợp còn lại.
Ta có: \(\frac{5}{x}-\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}+\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1+2y}{8}\)
=> (1 + 2y)x = 40 = 1 . 40 = 2.20 = 5 . 8 = 4 . 10
Vì 1 + 2y là số lẽ nên => 1 + 2y \(\in\)1; 5;-1;-5
Lập bảng :
x | 8 | 10 | -8 | -10 |
1 + 2y | 5 | 1 | -5 | -1 |
y | 2 | 0 | -3 | -1 |
Vậy ...
b) Ta có: \(\frac{x}{5}+\frac{1}{10}=\frac{1}{y}\)
=> \(\frac{2x+1}{10}=\frac{1}{y}\)
=> (2x + 1).y = 10 = 1 . 10 = 2. 5
Vì 2x + 1 là số lẽ => 2x + 1 \(\in\){1; 5; -1; -5}
Lập bảng: tương tự câu a
c) Như câu b.
đk 1 - x\(\ge\)0
=> x \(\le\)1
Khi đó |x - 2| = -(x - 2)
|x - 3| = -(x - 3)
....
|x - 9| = -(x - 9)
Khi đó |x - 2| + |x - 3| +... + |x - 9| = 1-x (8 cặp số ở VT)
<=> -(x - 2) + -(x - 3) + .... + -(x - 9) = 1 - x
=> -x + 2 - x + 3 - .... - x + 9 = 1 - x
=> -(x + x + ... x) + (2 + 3 + ... + 9) = 1 - x
8 hạng tử x 8 hạng tử
=> -8x + 44 = 1 - x
=> 7x = 43
=> x = 43/7
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)