K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
S
6 tháng 7 2017
Ta có : \(\left|x+\frac{2}{3}\right|=\frac{3}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{2}{3}=\frac{3}{5}\\x+\frac{2}{3}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{2}{3}\\x=-\frac{3}{5}-\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{15}\\x=-\frac{19}{15}\end{cases}}\)
6 tháng 7 2017
/x/+2/3=3/5 hoặc /x/+2/3=-3/5
x=3/5-2/3 x=-3/5-2/3
x=-1/15 x=-19/15
/x/-2,8=1/5 hoặc /x/-2,8=-1/5
x=1/5+2,8 x=-1/5+2,8
x=3 x=13/5
/x/+1/2+3=0
x+7/2=0
x=0-7/2
x=-7/2
/2x/-3/8=0
2x=0+3/8
2x=3/8
x=3/8:2
x=3/16
a) \(\left|2-x\right|+x=-3\\ \Rightarrow\left|2-x\right|=-3-x\left(ĐK:-3-x\ge0\right)\\ \Rightarrow\left[{}\begin{matrix}2-x=-3-x\\2-x=3+x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-x=-3-2\\-x-x=3-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=-5\left(\text{vô lí}\right)\\-2x=1\end{matrix}\right.\Rightarrow x=\frac{-1}{2}\left(ktm\text{ }-3-x\ge0\right)\)
Vậy \(x\in\varnothing\)
b) \(\left|x-1\right|+1=2x-3\\ \Rightarrow\left|x-1\right|=2x-4\left(ĐK:2x-4\ge0\right)\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-4\\x-1=-2x+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=4-1\\x+2x=1+4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\left(t/m\right)\\3x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(t/m\right)\\x=\frac{5}{3}\left(ktm\right)\end{matrix}\right.\)
Vậy x = 3
c) \(\left|\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}\right|=\left|2x-2+\frac{1}{3}\right|\\ \Rightarrow\left[{}\begin{matrix}\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}=2x-2+\frac{1}{3}\\\frac{4}{3}x-\frac{4}{3}+\frac{1}{2}=-2x+2-\frac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-\frac{4}{3}x=2-\frac{1}{3}-\frac{4}{3}+\frac{1}{2}\\\frac{4}{3}x+2x=\frac{4}{3}-\frac{1}{2}+2-\frac{1}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{5}{6}\\\frac{10}{3}x=\frac{5}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{4}\\x=\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{4};\frac{3}{4}\right\}\)