Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+4-\left(x^2-\frac{3}{2}\right)=\left(-3+4x^2\right)+\left(-\frac{4x^2}{3}+1\right)\)
\(2x^2-x^2+4+\frac{3}{2}=\)\(-3+1+4x^2-\frac{4x^2}{3}\)
\(x^2+\frac{11}{2}=-2+-\frac{16x^2}{3}\)
\(x^2+\frac{16x^2}{3}=\frac{-11}{2}-2=-\frac{15}{2}\)
\(\frac{19x^2}{3}=-\frac{15}{2}\)
\(19x^2=\frac{-15}{2}.3=-\frac{45}{2}\)
\(x^2=\frac{-45}{2}:19=-\frac{45}{38}\)
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
Câu 1:
Ta có: \(M\left(x\right)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)
\(=x^4+2x^2+1\)
\(=\left(x^2+1\right)^2\ge1\forall x\)
hay M(x) vô nghiệm(đpcm)
Câu 2:
Ta có: A(0)=5
\(\Leftrightarrow m+n\cdot0+p\cdot0\cdot\left(0-1\right)=5\)
\(\Leftrightarrow m=5\)
Ta có: A(1)=-2
\(\Leftrightarrow m+n\cdot1+p\cdot1\cdot\left(1-1\right)=-2\)
\(\Leftrightarrow5+n=-2\)
hay n=-2-5=-7
Ta có: A(2)=7
\(\Leftrightarrow5+\left(-7\right)\cdot2+p\cdot2\cdot\left(2-1\right)=7\)
\(\Leftrightarrow-9+2p=7\)
\(\Leftrightarrow2p=16\)
hay p=8
Vậy: Đa thức A(x) là 5-7x+8x(x-1)
\(=5-7x+8x^2-8x\)
\(=8x^2-15x+5\)
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)