Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
=\(\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
=\(\frac{7}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
=\(\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
=\(\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
=\(\frac{231}{4}.\frac{4}{21}\)
= 11
\(\dfrac{-7}{4}.\left(\dfrac{33}{12}+\dfrac{3333}{2020}+\dfrac{333333}{303030}+\dfrac{33333333}{42424242}\right)\)
\(=\dfrac{-7}{4}.\left(\dfrac{33}{12}.\dfrac{33.101}{20.101}.\dfrac{33.10101}{30.10101}.\dfrac{33.1010101}{42.1010101}\right)\)
\(=\dfrac{-7}{4}.\left(\dfrac{33}{12}.\dfrac{33}{20}.\dfrac{33}{30}.\dfrac{33}{42}\right)\)
\(=\dfrac{-7}{4}.33.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=\dfrac{-7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=\dfrac{-7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)
\(=\dfrac{-7}{4}.33.\dfrac{4}{21}\)
\(=33.\dfrac{-1}{3}\)
\(=11\)
a) \(\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=32\)
\(\frac{7}{4}x.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=32\)
\(\frac{7}{4}x.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)=32\)
\(\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=32\)
\(\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{7}\right)=32\)
\(\frac{7}{4}x.33\cdot\frac{4}{21}=32\)
đến đây thì bn tự lm đk r
b) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x.\left(x-1\right)}=\frac{2007}{2009}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x-1}-\frac{1}{x}\right)=\frac{2007}{2009}\)
\(2.\left(\frac{1}{2}-\frac{1}{x}\right)=\frac{2007}{2009}\)
\(1-\frac{2}{x}=\frac{2007}{2009}\)
\(\frac{2}{x}=\frac{2}{2009}\)
=> x = 2009
Kết quả : Viết lại biểu thức đã cho
=> -7/4x . ( 33/12 + 33/20 + 33/30 + 33/42 ) = 22
-7/4x . 33 . ( 1/12 + 1/20 + 1/30 + 1/42 ) = 22
-231/4x . ( 1/3 . 4 + 1/ 4. 5 + 1/5 . 6 + 1/ 6. 7 ) = 22
-231/4x . ( 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 ) = 22
-231/4x . ( 1/3 - 1/7 ) = 22
-231/4x . 4/21 = 22
-11x = 22
x = 22 : -11
x = -2
Vậy x = -2