K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Ta có: a+ b + c = 0

=> a+b = - c

a^3 + b^3 + c^3 = (a+b)3 - 3a2b - 3ab2 + c3

                               = ( -c)- 3a2b - 3ab+ c3

                               = (-c)+c-3ab( a+b)

                       =   - 3ab (-c) = 3abc ( đpcm)

14 tháng 12 2023

a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)

\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)

\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)

\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)

\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)

\(6x\left(-3x+4\right)=0\)

\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)

*) \(6x=0\)

\(x=0\)

*) \(-3x+4=0\)

\(3x=4\)

\(x=\dfrac{4}{3}\)

Vậy \(x=0;x=\dfrac{4}{3}\)

b) \(4x\left(x-2019\right)-x+2019=0\)

\(4x\left(x-2019\right)-\left(x-2019\right)=0\)

\(\left(x-2019\right)\left(4x-1\right)=0\)

\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)

*) \(x-2019=0\)

\(x=2019\)

*) \(4x-1=0\)

\(4x=1\)

\(x=\dfrac{1}{4}\)

Vậy \(x=\dfrac{1}{4};x=2019\)

a+b+c=0 nên a+b=-c

a^3+b^3+c^3

=(a+b)^3-3ab(a+b)+c^3

=(a+b+c)(a^2+2ab+b^2-bc-ac+c^2)-3ab(a+b)

=-3ab(-c)=3abc

(2x-2023)^3+(2020-x)^3+(23-x)^3=0

=>(2020-x)^3+(23-x)^3+[-(2020-x+23-x)^3]=0

=>3(2020-x)(23-x)(2x-2023)=0

=>\(x\in\left\{2020;23;\dfrac{2023}{2}\right\}\)

7 tháng 5 2018

Ta có: a + b + c = 0

⇒ a + b = -c ⇒ (a + b)3 = (-c)3

⇒ a3 + b3 + 3ab(a + b) = -c3 ⇒ a3 + b3 + 3ab(-c) + c3 = 0

⇒ a3 + b3 + c3 = 3abc

Bài 3: 

\(a+b+c=0\)

nên a+b=-c

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(=0\cdot\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Do đó: \(a^3+b^3+c^3=3abc\)(ĐPCM)

AH
Akai Haruma
Giáo viên
26 tháng 8 2021

Lời giải:

\(a^2+b^2+c^2=(a+b)^2-2ab+c^2=(-c)^2-2ab+c^2=2(c^2-2ab)\)

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)

Do đó: 

$2(a^2+b^2+c^2).3(a^3+b^3+c^3)=36abc(c^2-2ab)$

Mặt khác:
\(a^5+b^5+c^5=(a^2+b^2)(a^3+b^3)-a^2b^2(a+b)+c^5\)

\(=[(a+b)^2-2ab][(a+b)^3-3ab(a+b)]-a^2b^2(-c)+c^5\)

\(=(c^2-2ab)(-c^3+3abc)+a^2b^2c+c^5\)

\(=-c^5+3abc^3+2abc^3-6a^2b^2c+a^2b^2c+c^5\)

\(=5abc^3-5a^2b^2c=5abc(c^2-ab)\)

\(\Rightarrow 5(a^5+b^5+c^5)=25abc(c^2-ab)\)

Do đó 2 đẳng thức trên không bằng nhau.

 

a) Ta có: \(\dfrac{4x^2-3x-7}{A}=\dfrac{4x-7}{2x+3}\)

\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x^2-3x-7\right)}{4x-7}\)

\(\Leftrightarrow A=\dfrac{\left(2x+3\right)\left(4x-7\right)\left(x+1\right)}{4x-7}\)

\(\Leftrightarrow A=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow A=2x^2+5x+3\)

b) Ta có: \(\dfrac{1}{B}=\dfrac{a+b}{a^3+b^3}\)

\(\Leftrightarrow\dfrac{1}{B}=\dfrac{a+b}{\left(a+b\right)\left(a^2-ab+b^2\right)}=\dfrac{1}{a^2-ab+b^2}\)

hay \(B=a^2-ab+b^2\)

23 tháng 10 2017

+) Ta có: a 3 + b 3 = a + b 3 - 3 a b a + b

Thật vậy, VP = a + b 3  – 3ab (a + b)

= a 3 + 3 a 2 b + 3 a b 2 + b 3 - 3 a 2 b - 3 a b 2

= a 3 + b 3  = VT

Nên  a 3 + b 3 + c 3 = a + b 3 - 3 a b a + b + c 3  (1)

Ta có: a + b + c = 0 ⇒ a + b = - c (2)

Thay (2) vào (1) ta có:

a 3 + b 3 + c 3 = - c 3 - 3 a b - c + c 3 = - c 3 + 3 a b c + c 3 = 3 a b c

Vế trái bằng vế phải nên đẳng thức được chứng minh.