K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

\(2016\sqrt{\left(x+1\right)^2}+2015\sqrt{\left(x-1\right)^2}\)

\(=2016\left|x+1\right|+2015\left|x-1\right|\) (1)

Ta thấy: \(\begin{cases}2016\left|x+1\right|\ge0\\2015\left|x-1\right|\ge0\end{cases}\)

\(\Rightarrow\left(1\right)\ge0\).Mà \(2016\left|x+1\right|+2015\left|x-1\right|\le0\)

\(\Rightarrow\begin{cases}2016\left|x+1\right|=0\\2015\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x+1\right|=0\\\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)

Vô nghiệm (vì x ko nhận 2 giá trị khác nhau cùng lúc)

 

2 tháng 10 2016

Vì \(\sqrt{\left(x+1\right)^2}\ge0;\sqrt{\left(x-1\right)^2}\ge0\)

=> \(2016.\sqrt{\left(x+1\right)^2}\ge0;2015.\sqrt{\left(x-1\right)^2}\ge0\)

=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\ge0\)

Mà theo đề bài: \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)

=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}=0\)

=> \(\begin{cases}2016.\sqrt{\left(x+1\right)^2}=0\\2015.\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}\sqrt{\left(x+1\right)^2}=0\\\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}x+1=0\\x-1=0\end{cases}\) => \(\begin{cases}x=-1\\x=1\end{cases}\)

, vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau

Vậy không tồn tại giá trị của x thỏa mãn đề bài

18 tháng 12 2016

khó hiểu làm sao ?

18 tháng 12 2016

Đề chỉ nhiêu đâu thôi hả

6 tháng 2 2020

(3x - 1)^2016 + (5y - 3)^2016 < 0    (1)

có (3x - 1)^2016 > 0 

     (5y - 3)^2018 > 0

=> (3x-1)^2016  + (5y - 3)^2018 > 0    và (1)

=> (3x - 1)^2016 + (5y - 3)^2016 = 0

=> 3x - 1 = 0 và 5y - 3 = 0

=> x = 1/23 và y = 3/5

6 tháng 2 2020

Thông cảm máy chụp đểu

1 tháng 12 2019

#Tiểu_Tỷ_Tỷ⁀ᶜᵘᵗᵉ             

Đợi đến 9 giờ nha !

1 tháng 12 2019

                                                                              Bài giải

b, \(x-5+\left|x-3\right|=4\)

\(\left|x-3\right|=4-x+5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)

c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)

\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)

\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)

\(\)\(\Rightarrow\text{ }x=-7\)

d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)

\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)

\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)

4 tháng 2 2020

1. Vì \(\left(x+6\right)^2\ge0\forall x\)\(\left|y-\frac{1}{2}\right|\ge0\forall y\)\(\left|x+y+z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\ge0\)

mà \(\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|\le0\)( đề bài )

\(\Rightarrow\left(x+6\right)^2+\left|y-\frac{1}{2}\right|+\left|x+y+z\right|=0\)\(\Leftrightarrow\hept{\begin{cases}x+6=0\\y-\frac{1}{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\-6+\frac{1}{2}+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\y=\frac{1}{2}\\z=\frac{11}{2}\end{cases}}\)

Vậy \(x=-6\)\(y=\frac{1}{2}\)\(z=\frac{11}{2}\)

2. \(B=\left|x-2016\right|+\left|x-2018\right|=\left|x-2016\right|+\left|2018-x\right|\ge\left|x-2016+2018-x\right|=\left|2\right|=2\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-2016\right)\left(2018-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-2016< 0\\2018-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\2018< x\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2016\\x>2018\end{cases}}\)( vô lý )

TH2: \(\hept{\begin{cases}x-2016\ge0\\2018-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\2018\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\x\le2018\end{cases}}\Leftrightarrow2016\le x\le2018\)( thoả mãn )

Vậy \(minB=2\Leftrightarrow2016\le x\le2018\)

1 tháng 12 2018

Đề bài có sai không nhỉ ? Đáng nhẽ ra phải là \(\text{+|y-1|}\) mới đúng chứ ???

5 tháng 8 2015

\(2016.\left|x-1\right|+\left(x-1\right)^2=2015.\left|1-x\right|\)

\(2016.\left|x-1\right|-2015.\left|x-1\right|+\left(x-1\right)^2=0\)

\(\left|x-1\right|+\left(x-1\right)^2=0\)

\(\text{Vì }\left|x-1\right|\ge0\text{và }\left(x-1\right)^2\ge0\text{ nên :}\)

\(x-1=0\)

\(x=1\)

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà