Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow6x-9+4-2x=-3\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-3-6x\right)\left(2x-3+6x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-3-4x=0\\8x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{8}\end{matrix}\right.\)
\(a,\left(3x+1\right)\left(3x-1\right)-\left(18x^3+5x^2-2x\right):2x\\ =\left(9x^2-1\right)-\left(9x^2+\dfrac{5}{2}x-1\right)\\ =9x^2-1-9x^2-\dfrac{5}{2}x+1=\dfrac{5}{2}x\)
\(b,3x\left(x-2021\right)-x+2021=0\\ \Rightarrow b,3x\left(x-2021\right)-\left(x-2021\right)=0\\ \Rightarrow\left(x-2021\right)\left(3x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x\left(5-6x\right)+\left(2x-1\right)\left(3x+\text{4}\right)=6\\ \Leftrightarrow5x-6x^2+6x^2+8x-3x-4=6\)
\(\Leftrightarrow10x-4=6\)
\(\Leftrightarrow10x=6+4\\ \Leftrightarrow10x=10\\ \Leftrightarrow x=\dfrac{10}{10}\)
\(\Leftrightarrow x=1\)
\(x^2\left(x-2021\right)-x+2021=0\)
\(\Leftrightarrow x^2\left(x-2021\right)-(x-2021)=0\)
\(\Leftrightarrow\left(x-2021\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-2021\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2021=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=1\\x=-1\end{matrix}\right.\)
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
Đặt 2020-x=a
Phương trình trở thành:
\(a^3+\left(a+1\right)^3-\left(2a+1\right)^3=0\)
\(\Leftrightarrow a^3+a^3+3a^2+3a+1-\left(8a^3+12a^2+6a+1\right)=0\)
\(\Leftrightarrow2a^3+3a^2+3a+1-8a^3-12a^2-6a-1=0\)
\(\Leftrightarrow-6a^3-9a^2-3a=0\)
\(\Leftrightarrow-3a\left(2a^2+3a+1\right)=0\)
\(\Leftrightarrow a\left(2a+1\right)\left(a+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\2a+1=0\\a+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\2a=-1\\a=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{1}{2}\\a=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2020-x=0\\2020-x=-\dfrac{1}{2}\\2020-x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{4041}{2}\\x=2021\end{matrix}\right.\)
Vậy: \(S=\left\{2020;\dfrac{4041}{2};2021\right\}\)
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
a) \(5\left(x+3\right)-2x\left(3+x\right)=0\\ \Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\5-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
b) \(4x\left(x-2021\right)-x+2021=0\\ \Leftrightarrow4x\left(x-2021\right)-\left(x-2021\right)=0\\ \Leftrightarrow\left(4x-1\right)\left(x-2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=0\\x-2021=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=2021\end{matrix}\right.\)
Bạn tự kết luận cả 2 câu giúp mình nhé.
a: \(5\left(x+3\right)-2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
b: Ta có: \(4x\left(x-2021\right)-x+2021=0\)
\(\Leftrightarrow\left(x-2021\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{4}\end{matrix}\right.\)