Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{x}\left(3\sqrt{2}-5\sqrt{8}+7\sqrt{18}\right)+28\\ =\sqrt{x}\left(3\sqrt{2}-10\sqrt{2}+21\sqrt{2}\right)+28\\ =\sqrt{x}\cdot14\sqrt{2}+28=14\sqrt{2}\left(\sqrt{x}+\sqrt{2}\right)\)
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
Rút gọn biểu thức:
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28=3\sqrt{2x}-5\sqrt{4.2x}+7\sqrt{9.2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)
\(=24\sqrt{2x}-10\sqrt{2x}+28\)
\(=14\sqrt{2x}+28\)
9) Sửa: \(2\sqrt{8\sqrt{3}}-2\sqrt{5\text{ }\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=2\sqrt{2^2\cdot2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{2^2\cdot5\sqrt{3}}\)
\(=2\cdot2\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot2\sqrt{5\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)
10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\)
\(=\sqrt{2^2\cdot3x}-\sqrt{4^2\cdot3x}-3\sqrt{3x}+27\)
\(=2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}+27\)
\(=-5\sqrt{3x}++27\)
11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\)
\(=\sqrt{3^2\cdot2x}-5\sqrt{2^2\cdot2x}+7\sqrt{3^2\cdot2x}+28\)
\(=3\sqrt{2x}-5\cdot2\sqrt{2x}+7\cdot3\sqrt{2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)
\(=14\sqrt{2x}+28\)
12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)
\(=\sqrt{3^2\cdot5a}-\sqrt{2^2\cdot5a}+4\sqrt{3^2\cdot5a}+\sqrt{a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+4\cdot3\sqrt{5a}+\sqrt{a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)
\(=13\sqrt{5a}+\sqrt{a}\)
<=>3\(\sqrt{2x}\)-20\(\sqrt{2x}\)+21\(\sqrt{2x}\)=28
<=>4\(\sqrt{2x}\)=28
<=>\(\sqrt{2x}\)=7
<=>2x=14
<=>x=7
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
\(3\sqrt{2x}-5\sqrt{8}.\sqrt{x}+7\sqrt{18x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2}.\sqrt{x}+7\sqrt{18x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2}.\sqrt{x}+7.\sqrt{18}.\sqrt{x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2}.\sqrt{x}+7.3\sqrt{2}.\sqrt{x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2x}+7.3\sqrt{2x}=28\)
\(3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(14\sqrt{2x}=28\)
\(392x=784\)
\(x=\frac{784}{392}=2\)
\(a,3\sqrt{2x}+\sqrt{8x}-\sqrt{18x}=16\left(dk:x\ge0\right)\\ \Leftrightarrow3\sqrt{2x}+2\sqrt{2x}-3\sqrt{2x}=16\\ \Leftrightarrow\sqrt{2x}\left(3+2-3\right)=16\\ \Leftrightarrow2\sqrt{2x}=16\\ \Leftrightarrow\sqrt{2x}=8\\ \Leftrightarrow\left|2x\right|=64\\ \Leftrightarrow2x=64\\ \Leftrightarrow x=32\left(tm\right)\)
Vậy \(S=\left\{32\right\}\)
\(b,\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\left(dk:x\ge-5\right)\)
\(\Leftrightarrow\sqrt{4\left(x+5\right)}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9\left(x+5\right)}=6\\ \Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}\left(2-3+4\right)=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=2\\ \Leftrightarrow\left|x+5\right|=4\\ \Leftrightarrow x+5=4\\ \Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
a)
Lưu ý. Các căn số bậc hai là những số thực. Do đó khó làm tính với căn số bậc hai, ta có thể vận dụng mọi quy tắc và mọi tính chất của các phép toàn trên số thực.
b) Dùng phép đưa thừa số ra ngoài dấu căn để có những căn thức giống nhau là .
ĐS:
\(< =>3\sqrt{2x}-5\sqrt{2^2.2x}+7\sqrt{3^2.2x}=28\)
\(< =>3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(< =>14\sqrt{2x}=28\)
\(< =>\sqrt{2x}=\dfrac{28}{14}=2=\sqrt{4}\)
\(< =>\sqrt{2x}=\sqrt{2.2}=>x=2\)