Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số nguyên vừa tìm được là:
S = (-9) + (-8) + ... + (-1) + 0 + 1 + 2 + ... + 8 + 9 + 10 + 11 + ... + 14
S =[( -9) + 9] + [(-8) + 8] + [(-7) + 7] + [(-6) + 6] +...+ [(-1) + 1] + 0 + (10 + 11 + 12 + 13 + 14)
S = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 60
S = 60
Số nguyên tố p ko thể là 2 vì ko có 2 số nguyên tố nào có tổng là2
=> p là số lẻ
Mà p là tổng 2 số nt và cũng là hiêu 2 số nt
Do đó: p=a+2 p=b-2[a;b thuộc P]
TA thấy p-2 ;p; p+2 là 3 số lẻ liên tiếp nên 1 trong 3 số luôn chia hết cho 3
Mà cả 3 số này đều là số nguyên tố nên 1 trong 3 số là số 3
Nếu a=3 thì p=5;b=7[chọn]
Nếu b=3 thì p=1[loại]
Nếu p=3 thì a=1[loại]
Vậy số nguyên tố p cần tìm là 5
mà cả 3 số đều là số nguyên tố nên 1 trong 3 số là sô 3
Các số nguyên x thỏa mãn -10 < x < 15 là:
x ∈ { -9; -8; -7; ...; -1; 0; 1; 2; ...; 13; 14}
Giải:
Gọi tổng phải tìm là S, tổng các số có 2 chữ số là \(S_1\), tổng các chữ số chia hết cho 3 là \(S_2\), tổng các số có 2 chữ số chia hết cho 5 là \(S_3\), tổng các số có 2 chữ số chia hết cho 15 là \(S_4\). Ta lần lượt có:
\(S_1=\frac{10+99}{2}\times90=4905\) ; \(S_2=\frac{12+99}{2}\times30=1665.\)
\(S_3=\frac{10+95}{2}\times18=945\) ; \(S_4=\frac{15+90}{2}\times6=315.\)
\(S=S_1-S_2-S_3+S_4=4905-1665-945+315=2610\)
( Phải cộng thêm \(S_4\) vì trong \(S_2\) và \(S_3\) có những số vừa chia hết cho 3 vừa chia hết cho 5(tức là chia hết cho 15) nên những số đó đã được trừ đi 2 lần)
gọi A là tổng các số 2 chữ số là:
A= 10+11+12+13+...+99
=10+99x90:2=4905
gọi B là tổng các chữ số chia hết cho 3:
B=12+15+18+...+99
=12+99x30:2=1665
gọi C là tổng các chữ số chia hết cho 5:
C=10+15+20+..+99
= 10+95x18:2=945
gọi D là tổng hai số chia hết cho cả 3 và 5:
D=15+30+...+90
=15+90x6:2=315.
Tổng tất cả hai số tự nhiên không chia hết cho cả 3 và 5 là:
4905-1665-945+315=2610.
Đ/s:...
a)7x= 2-(-47) = 49
x= 49:7 = 7
b) => 4x-12 = 8
4x-12 = -8
=> 4x= 8+12= 20
4x= -8+12 = 4
=> x= 20:4 = 5
x= 4:4 =1