K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Tọa độ của vectơ \(\overrightarrow a \) là \(\left( {2;7} \right)\)

b) Tọa độ của vectơ \(\overrightarrow b \) là \(\left( { - 1;3} \right)\)

c) Tọa độ của vectơ \(\overrightarrow c \) là \(\left( {4;0} \right)\)

d) Tọa độ của vectơ \(\overrightarrow d \) là \(\left( {0; - 9} \right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Vì \(\overrightarrow a  = 3\overrightarrow i \)nên \(\overrightarrow a  = \left( {3;0} \right)\)

b) Vì \(\overrightarrow b  =  - \overrightarrow j \)nên \(\overrightarrow b  = \left( {0; - 1} \right)\)

c) Vì \(\overrightarrow c  = \overrightarrow i  - 4\overrightarrow j \)nên \(\overrightarrow c  = \left( {1; - 4} \right)\)

d) Vì \(\overrightarrow d  = 0,5\overrightarrow i  + \sqrt 6 \overrightarrow j \)nên \(\overrightarrow d  = \left( {0,5;\sqrt 6 } \right)\)

1 tháng 4 2017

a) Ta có = 2 = 2 + 0 suy ra = (2;0)

b) = (0; -3)

c) = (3; -4)

d) = (0,2; - √ 3)

16 tháng 5 2017

a) \(\overrightarrow{a}\left(2;3\right)\);
b) \(\overrightarrow{b}\left(\dfrac{1}{3};-5\right)\);
c) \(\overrightarrow{c}\left(3;0\right)\);
d) \(\overrightarrow{d}\left(0;-2\right)\).

30 tháng 1 2023

Giả sử `\vec{c}=m\vec{a}+n\vec{b}`

`<=>(3;-4)=m(2;0)+n(0;-3)`

`<=>(3;-4)=(2m;-3n)`

`<=>{(m=3/2),(n=4/3):}`

   `=>\vec{c}=3/2\vec{a}+4/3\vec{b}`

AH
Akai Haruma
Giáo viên
28 tháng 12 2021

Lời giải:

$\overrightarrow{i}=(1,0), \overrightarrow{j}=(0,1)$

$\Rightarrow \overrightarrow{i}-\overrightarrow{j}=(1-0,0-1)=(1,-1)$

AH
Akai Haruma
Giáo viên
28 tháng 12 2021

Bài 2:

$\overrightarrow{a}+2\overrightarrow{b}=(3+2.-1, -4+2.2)=(1, 0)$

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow b  = \left( {4; - 1} \right)\) và \(\overrightarrow a  = 3.\overrightarrow i  - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)

\( \Rightarrow 2\;\overrightarrow a  - \overrightarrow b  = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)

Lại có: M (-3; 6), N(3; -3)

\( \Rightarrow \overrightarrow {MN}  = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)

Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN}  = 3\left( {2\;\overrightarrow a  - \overrightarrow b } \right)\)

b) Ta có: \(\overrightarrow {OM}  = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON}  = \left( {3; - 3} \right)\) (do N (3; -3)).

Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).

Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM}  = \overrightarrow {PN} \).

Do \(\overrightarrow {OM}  = \left( { - 3;6} \right),\;\overrightarrow {PN}  = \left( {3 - x; - 3 - y} \right)\)  nên

\(\overrightarrow {OM}  = \overrightarrow {PN}  \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 =  - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 9\end{array} \right.\)

Vậy điểm cần tìm là P (6; -9).

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có hai vectơ \(\overrightarrow i \) và \(\overrightarrow j \) vuông góc nên \(\overrightarrow i .\overrightarrow j  = 0\)

+) \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} + 2\overrightarrow i .\overrightarrow j  = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)

+) \({\left( {\overrightarrow i  + \overrightarrow j } \right)^2} = {\left( {\overrightarrow i } \right)^2} + {\left( {\overrightarrow j } \right)^2} - 2\overrightarrow i .\overrightarrow j  = {\left| {\overrightarrow i } \right|^2} + {\left| {\overrightarrow j } \right|^2} = 1 + 1 = 2\)

+) \(\left( {\overrightarrow i  + \overrightarrow j } \right)\left( {\overrightarrow i  - \overrightarrow j } \right) = {\left( {\overrightarrow i } \right)^2} - {\left( {\overrightarrow j } \right)^2} = {\left| {\overrightarrow i } \right|^2} - {\left| {\overrightarrow j } \right|^2} = 1 - 1 = 0\)

b) Sử dụng kết quả của câu a) ta có:

\(\overrightarrow a .\overrightarrow b  = \left( {2\overrightarrow i  + 2\overrightarrow j } \right).\left( {3\overrightarrow i  - 3\overrightarrow j } \right) = 2.3.\left( {\overrightarrow i  + \overrightarrow j } \right).\left( {\overrightarrow i  - \overrightarrow j } \right) = 6.0 = 0\)

\(\overrightarrow a .\overrightarrow b  = 0 \Rightarrow \overrightarrow a  \bot \overrightarrow b  \Rightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)