Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\dfrac{1}{3}=1\dfrac{1}{\left(1+2\right)1};1\dfrac{1}{8}=1\dfrac{1}{\left(2+2\right)2}\)
số thứ 98 = \(1\dfrac{1}{\left(98+2\right)98}=1\dfrac{1}{9800}\)
a) Ta viết lại dãy đã cho thành \(1\dfrac{1}{3},1\dfrac{1}{8},1\dfrac{1}{15},...\)
Ta có thể thấy mẫu số của phần phân số trong các hỗn số của dãy là dãy các tích của 2 số cách nhau 2 đơn vị kể từ \(1.3\). Chẳng hạn \(3=1.3\), \(8=2.4\), \(15=3.5,...\) Do đó ta rút ra công thức số hạng tổng quát của dãy là \(u_n=1\dfrac{1}{n\left(n+2\right)}\)\(1+\dfrac{1}{n\left(n+2\right)}=\dfrac{n^2+2n+1}{n\left(n+2\right)}=\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)
b) Ta cần tính \(u_1.u_2...u_{98}\). Ta thấy rằng
\(u_1.u_2...u_{98}\) \(=\dfrac{\left(1+1\right)^2}{1.3}.\dfrac{\left(2+1\right)^2}{2.4}.\dfrac{\left(3+1\right)^2}{3.5}...\dfrac{\left(98+1\right)^2}{97.99}\) \(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{6^2}{4.6}...\dfrac{98^2}{97.99}.\dfrac{99^2}{98.100}\) \(=\dfrac{2.99}{100}=\dfrac{99}{50}\)
Cần phải CM: \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{198}-\frac{1}{200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{200}\)
\(\Rightarrow A=\frac{99}{200}\)
\(\Rightarrow\frac{1}{2}A=\frac{99}{200}\)
\(\Rightarrow A=\frac{99}{400}\)
Có: \(\frac{1}{4}=\frac{100}{400}\)
Lại có: \(\frac{99}{400}< \frac{100}{400}\)
Vậy A < 1/4 (đpcm)
Dự vào thừa số thứ nhất ở mẫu , ta xác định được thừa số thứ nhất ở mẫu của số hạng thứ 100 là :
\(2+2\left(100-1\right)=200\)
Tức là chứng minh :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)
Ta có :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)
Vậy
Dự vào thừa số thứ nhất ở mẫu, ta xác định thừa số thứ nhất ở mẫu của số hạng thứ 100 là :
\(2+2\left(100-1\right)=200\)
Tức là chứng minh :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)
Ta có :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)
Vậy ...
Các mẫu các số hạng là tích của 2 số cách nhau 5 đơn vị (6 = 1.6 ; 66 = 6.11 ; 176 = 11.16 ; 336 = 16.21;...).
Cho dãy gồm các thừa số I của các tích bên : 1 ; 6 ; 11 ; 16 ; ...Số hạng thứ 100 của dãy này là : 1 + 5(100 - 1) = 496
Vậy tổng của 100 số hạng đầu tiên của dãy đã cho là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{491.496}+\frac{1}{496.501}\)\(=\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+..+\frac{5}{491.496}+\frac{5}{496.501}\right):5\)
\(=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{491}-\frac{1}{496}+\frac{1}{496}-\frac{1}{501}\right):5\)
\(=\left(1-\frac{1}{501}\right):5=\frac{500}{501}:5=\frac{100}{501}\)
a)1/5.8+1/8.11+1/11.14+...+1/x(x+3)=101/1540
<=>1/3(3/5.8+3/8.11+...+3/x(x+3) =101/1540
<=>1/3(1/5-1/8+1/8-1/11+...+1/x-1/x+3=101/1540
<=>1/5-1/x+3=303/1540<=>1/x+3=1/308
<=>x+3=308<=>x=305
Nguồn CHTT, hihi !
Ta có: 96 số hạng đầu tiên của dãy
\(1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{98}\)
\(\Rightarrow\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{99}{98}\)
=> Biểu thức = ?? ( tự rút gọn)