Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{t}{x}\)= \(\frac{4}{3}\)=\(\frac{8}{12}\) \(\frac{z}{x}\)=\(\frac{1}{6}\)=\(\frac{2}{12}\)
\(\frac{y}{z}\)=\(\frac{3}{2}\)
Suy ra: \(\frac{t}{y}\)=\(\frac{8}{3}\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{z}{x}=\frac{1}{6}\Rightarrow\frac{x}{z}=6\)
\(\Rightarrow\frac{t}{x}.\frac{x}{z}=\frac{t}{z}=8\)
\(\frac{y}{z}=\frac{3}{2}\Rightarrow\frac{z}{y}=\frac{2}{3}\)
\(\Rightarrow\frac{t}{z}.\frac{z}{y}=\frac{t}{y}=\frac{16}{3}\)
Ta có:\(\frac{z}{x}=\frac{1}{6}\Rightarrow\frac{z}{1}=\frac{x}{6}\Rightarrow\frac{z}{2}=\frac{x}{12}\left(1\right)\)
\(\frac{y}{z}=\frac{3}{2}\Rightarrow\frac{y}{3}=\frac{z}{2}\left(2\right)\)
\(\frac{t}{x}=\frac{4}{3}\Rightarrow\frac{t}{4}=\frac{x}{3}\Rightarrow\frac{t}{16}=\frac{x}{12}\left(3\right)\)
Từ (1),(2) và (3)\(\Rightarrow\frac{z}{2}=\frac{x}{12}=\frac{y}{3}=\frac{t}{16}\)
\(\Rightarrow\frac{t}{y}=\frac{16}{3}\)
Vậy \(\frac{t}{y}=\frac{16}{3}\)
x : y : z : t = 2 : 3 : 4 : 5
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{2}{7}\)
\(\Rightarrow x=\frac{2}{7}.2=\frac{4}{7};y=\frac{2}{7}.3=\frac{6}{7};z=\frac{2}{7}.4=\frac{8}{7};t=\frac{2}{7}.5=\frac{10}{7}\)
Ta có: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{49}{7}=7\)
\(\Rightarrow x=7.10=70;y=7.15=105;z=7.12=84\)
\(\frac{x-1}{3}=\frac{2y-1}{4}=\frac{z+2}{5}=\frac{y+t+3}{6}\)\(=\frac{x-1+2y-1+z+2-y-t-3}{3+4+5-6}\)
\(=\frac{x+y+z-t-3}{6}=\frac{1-3}{6}=-\frac{1}{3}\)
=> \(x-1=-1;2y-1=-\frac{4}{3};z+2=-\frac{5}{3};y+t+3=-2\)
=> \(x=0;y=-\frac{1}{6};z=-\frac{11}{3};t=-\frac{29}{6}\)