Tìm tham số m để hàm số sau xác định trên R

1/ 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

Để hàm số y xác định trên R, ta cần xác định điều kiện để biểu thức trong dấu căn không âm: 1/ y = √(cos^2x + cosx - 2m + 1) Điều kiện: cos^2x + cosx - 2m + 1 ≥ 0 - Để giải bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x + cosx - 2m + 1 không có nghiệm trong khoảng [-∞ , +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = 1 - 4(1)(-2m + 1) = 8m - 3 - Để f(x) không có nghiệm, ta cần Δ < 0: 8m - 3 < 0 => m < 3/8 Do đó, hàm số y = √(cos^2x + cosx - 2m + 1) xác định trên R khi m < 3/8. 2/ y = √(cos^2x - 2cosx + m) Điều kiện: cos^2x - 2cosx + m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x - 2cosx + m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) ) - Để f(x) không có nghiệm, ta cần Δ < 0: 1 - m < 0 => m > 1 Do đó, hàm số y = √(cos^2x - 2cosx + m) xác định trên R khi m > 1. 3/ y = √(sin^4x + cos^4x - sin^2x - m) Điều kiện: sin^4x + cos^4x - sin^2x - m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 4: f(x) = sin^4x + cos^4x - sin^2x - m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-1)^2 - 4(1)(-m) = 1 + 4m - Để f(x) ) không có nghiệm, ta cần Δ < 0: 4m < -1 => m < -1/4 Do đó, hàm số y = √(sin^4x + cos^4x - sin^2x - m) xác định trên R khi m < -1/4.

6 tháng 6 2016

câu 1 ntn.

gọi số thú săn đc mỗi ng là a1, a2,..., a7

vì mỗi người ăn đc số thú khác nhau nên giả sử là a1<a2<ả3<...<a7

TH1: a5>15a5+a6+a716+17+18=51>50a5>15⇒a5+a6+a7≥16+17+18=51>50

TH2 : a515a1+a2+a3+a414+13+12+11=50a5≤15⇒a1+a2+a3+a4≤14+13+12+11=50⇒a5+a6+a750a5+a6+a7≥50


câu 2.

Xét F(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxnF(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxn

F(x)=f(x)>0xR⇒F′(x)=f(x)>0∀x∈R

suy ra F(x) đồng biến trên R

F(π)>F(0)a0.π>0a0>0⇒F(π)>F(0)⇔a0.π>0⇔a0>0
 

29 tháng 8 2020

dịch hộ cái

1 tháng 9 2021

câu a là = căn2/2 nha mng

với cả cả a lẫn b đều là mũ 3 ạ

11 tháng 8 2021

kick cho mình nha

undefined

NV
15 tháng 8 2020

Thật sự là ko dịch được đề luôn, bạn cố gắng gõ bằng công thức được ko? :(

21 tháng 1 2017

Nghe lời như vầy có phải dễ thương hơn không :3

Gọi công sai của cấp số cộng đó là d và số đầu tiên là u1 thì ta có:

\(\left\{\begin{matrix}u_2=u_1+d\\u_3=u_1+2d\\...\\u_n=u_1+\left(n-1\right)d\end{matrix}\right.\)

Ta có: \(S_n=u_1+u_2+u_3...+u_n\)

\(=u_1+u_1+d+u_1+2d+...+u_1+\left(n-1\right)d\)

\(=n.u_1+d\left(1+2+...+\left(n-1\right)\right)\)

\(=n.u_1+\frac{\left(n-1\right).n.d}{2}\)

\(=\frac{n}{2}\left(2u_1+\left(n-1\right)d\right)\)

\(=\frac{n\left(u_1+u_n\right)}{2}\)