Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét p=2
⇒ \(2^2+2^2=4+4=8\left(L\right)\)
Xét p=3
⇒ \(2^3+3^2=8+9=17\left(TM\right)\)
Xét p>3
⇒ p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.
Do đó: 2p+p2là hợp số (L)
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
+Với p=2 ta có:p+8=10 là hợp số => không thỏa mãn
p+10=12
+Với p=3 ta có:p+8=11 là số nguyên tố=>thỏa mãn
p+10=13
Với p>3 do p là số nguyên tố =>p=3k+1 hoặc 3k+2
Với p=3k+1 thì p+8=3k+9 Do 3k+9 chia hết cho 3 mà 3k+9>3-> 3k+9 là hợp số=> không thỏa mãn
p+10=3k+11
+Với p=3k+2 thì p+8 =3k+10
p+10=3k+12 Do 3k+12 chia hết cho 3 mà 3k+12>3->3k là hợp số=>không thoả mãn
Vậy p=3
(+) Với p = 2 => p + 8 = 2 + 8 = 10 không là số nguyên tố
(+) p = 3 => p + 8 = 3 + 8 = 11 ; p + 10 = 3 + 10 = 13 là số nguyên tố
(+) với p > 3 => p có dạng 3k + 1 (1) và 3k + 2 (2)
(1) với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3) chia hết cho 3 ( loại)
(2) với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 = 3 ( k + 4) chia hết cho 3 ( loại)
VẬy chỉ có p = 3 thỏa mãn
Với \(p=3\) \(\Rightarrow2p^4-p^2+16=169=13^2\) thỏa mãn
Với \(p\ne3\Rightarrow p⋮̸3\Rightarrow p^2\) luôn chia 3 dư 1
\(\Rightarrow p^2=3k+1\)
\(\Rightarrow2p^4-p^2+16=2\left(3k+1\right)^2-\left(3k+1\right)+16=3\left(6k^2+3k+5\right)+2\) chia 3 dư 2
\(\Rightarrow2p^4-p^2+16\) ko thể là SCP với \(p\ne3\)
\(\Rightarrow p=3\) là giá trị duy nhất thỏa mãn
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài