Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(m\ne2\)
\(y=\left(m-2\right)x+m-1\)
=>\(\left(m-2\right)x-y+m-1=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-2\right)+0\cdot\left(-1\right)+m-1\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{\left|m-1\right|}{\sqrt{\left(m-2\right)^2+1}}\)
Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{\left|m-1\right|}{\sqrt{\left(m-2\right)^2+1}}=2\)
=>\(\left|m-1\right|=\sqrt{4\left(m-2\right)^2+4}\)
=>\(\sqrt{4\left(m-2\right)^2+4}=\sqrt{\left(m-1\right)^2}\)
=>\(4\left(m-2\right)^2+4=\left(m-1\right)^2\)
=>\(4\left(m^2-4m+4\right)+4-m^2+2m-1=0\)
=>\(4m^2-16m+16-m^2+2m+3=0\)
=>\(3m^2-14m+19=0\)(1)
\(\text{Δ}=\left(-14\right)^2-4\cdot3\cdot19\)
\(=196-12\cdot19=-32< 0\)
=>Phương trình (1) vô nghiệm
Vậy: \(m\in\varnothing\)
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
\(d\left(O;d\right)=\dfrac{\left|\left(m-2\right)\cdot0+\left(-1\right)\cdot0+3\right|}{\sqrt{\left(m-2\right)^2+1}}=\dfrac{3}{\sqrt{\left(m-2\right)^2+1}}\)
Để d=1 thì \(\sqrt{\left(m-2\right)^2+1}=3\)
=>(m-2)^2+1=9
=>(m-2)^2=8
=>\(m=\pm2\sqrt{2}+2\)