K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2023

TH1: x + y + z  0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

xy+z+1��+�+1 = yx+z+2��+�+2 = zx+y3��+�−3 = x+y+zy+z+1+x+z+2+x+y3�+�+��+�+1+�+�+2+�+�−3 

              = x+y+zx+y+z+x+y+z�+�+��+�+�+�+�+� = x+y+z2(x+y+z)�+�+�2(�+�+�) = 1212 

⇒ x + y + z = 1212

⇒ x + y       = 1212 - z

    x + z        = 1212 - y

    y + z        = 1212 - x

Thay y + z + 1 = 1212 - x + 1

⇒ x12x+1�12−�+1 = 1212

⇒ 2x = 1212 - x + 1

⇒ 2x + x = 1212 + 1

⇒  3x   =  3232

⇒   x    = 1212

Thay x + z + 2 = 1212 - y + 2

⇒ y12y+2�12−�+2 = 1212

⇒ 2y = 1212 - y + 2

⇒ 2y + y = 1212 + 2

⇒   3y  = 5252

⇒     y   = 5656

Thay x + y - 3 = 1212 - z - 3

⇒ z12z3=�12−�−3=\frac{1}{2}$

⇒ 2z = 1212 - z - 3

⇒ 2z + z = 1212 - 3

⇒  3z  = 52−52

⇒   z   = 56−56

TH2: x + y + z = 0

⇒ xy+z+1��+�+1 = yx+z+2��+�+2 = zx+y3��+�−3 = 0

⇒ x = y = z = 0

 

16 tháng 8 2023

loading...

https://olm.vn/cau-hoi/tim-tat-ca-cac-so-xyz-biet-dfracxyz1dfracyxz2dfraczxy-3xyz-giair-chi-tiet-ho-e-vs-a.8297156371934

16 tháng 8 2023

gợi ý nè:

thử cộng chúng lại xem

16 tháng 8 2023

\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)

\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)

\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1 

⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)

 Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1

                                      3\(x\)      = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)

\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)

Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2 

                                   3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)

Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)

                                                              \(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)

Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))

 

1 tháng 1 2024

\(x\) = y.\(\dfrac{3}{4}\) ; z = \(\dfrac{y}{5}\).7

Thay \(x\) = y.\(\dfrac{3}{4}\) và z  = \(\dfrac{y}{5}\).7 vào biểu thức:

2\(x\) + 3y - z  = 186 ta có:

2.y.\(\dfrac{3}{4}\) + 3y - \(\dfrac{y}{5}\).7 = 186

y.(2.\(\dfrac{3}{4}\) + 3 - \(\dfrac{7}{5}\)) = 186

y.\(\dfrac{31}{10}\) = 186

 y = 186 : \(\dfrac{31}{10}\)

y = 60 ; \(x\) = 60. \(\dfrac{3}{4}\) = 45; z = 60.\(\dfrac{7}{5}\) = 84

\(x\) + y + z  = 45 + 60  + 84 = 189 

 

1 tháng 1 2024

Mình không hiểu câu sau của đề bài.

Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

Do đó:

\(\dfrac{x}{15}=3\Rightarrow x=15.3=45\)

\(\dfrac{y}{20}=3\Rightarrow y=20.3=60\)

\(\dfrac{z}{28}=3\Rightarrow z=28.3=84\)

Tổng là: \(x+y+z=45+60+84=189\)

Vậy....

1 tháng 3 2018

a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)

Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)

Thay vào đề bài ta được:

\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z

b) Theo đề bài ta có sẵn x+y+z khác 0

Áp dụng dãy tỉ số rồi làm tương tự câu a

3 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{x+y+1+x+z+2+x+y-3}{x+y+z}=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2.\left(x+y+z\right)}{x+y+z}=2\)

Lại có:

\(\dfrac{y+z+1}{x}+\dfrac{x+z+2}{y}+\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(\Rightarrow2=\dfrac{1}{x+y+z}\)

\(\Rightarrow2.\left(x+y+z\right)=1\)

\(\Rightarrow x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+y+z+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=-\dfrac{5}{6}\end{matrix}\right.\) .

23 tháng 9 2017

a/ Ta có ;

\(x+y+z=92\)

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)

\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Leftrightarrow x=20\\\dfrac{y}{15}=2\Leftrightarrow y=30\\\dfrac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)

Vậy .................

b/Ta có :

\(x+y-z=95\)

\(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}\)

Áp dụng t/x dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}=\dfrac{x+y-z}{15+10-5}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\Leftrightarrow x=75\\\dfrac{y}{10}=5\Leftrightarrow y=50\\\dfrac{z}{5}=5\Leftrightarrow z=25\end{matrix}\right.\)

Vậy ..

23 tháng 9 2017

a, \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{5}=\dfrac{z}{7},x+y+z=92\)

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21},x+y+z=92\)

AD t/c DTS = nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)

+) \(\dfrac{x}{10}=2\Rightarrow x=20\)

+) \(\dfrac{y}{15}=2\Rightarrow y=30\)

+) \(\dfrac{z}{21}=2\Rightarrow z=42\)

b, \(2x=3y=5z,x+y-z=95\)

\(\Rightarrow\dfrac{30x}{15}=\dfrac{30y}{10}=\dfrac{30z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6},x+y-z=95\)

AD t/c DTS = nhau ta có:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

+) \(\dfrac{x}{15}=5\Rightarrow x=75\)

+) \(\dfrac{y}{10}=5\Rightarrow y=50\)

+) \(\dfrac{z}{6}=5\Rightarrow z=30\)

c, Bn xem lại đề bài nha! gianroi

10 tháng 10 2017

Áp dụng t/c dãy t/s = nhau:

\(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow y+z+1=2x\)

     \(x+z+2=2y\)

     \(x+y-3=2z\)

     \(x+y+z=\frac{1}{2}\)

*) \(x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\)Thay vào \(y+z+1=2x\)ta được \(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

*) \(x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\) Thay vào \(x+z+2=2y\) ta được \(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\Rightarrow x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{1}{2}-\frac{4}{3}=-\frac{5}{6}\)

2 tháng 11 2017

Đặt \(\dfrac{y+x+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=k\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(k=\dfrac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\dfrac{2x+2y+2z}{x+y+z}=2\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy ....................

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau, với $x+y+z\neq 0$ ta có:
\(\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2\)

\(\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ y+z+1=2x\\ x+z+2=2y\\ x+y-3=2z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ x+y+z+1=3x\\ x+y+z+2=3y\\ x+y+z-3=3z\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} \frac{1}{2}+1=3x\\ \frac{1}{2}+2=3y\\ \frac{1}{2}-3=3z\end{matrix}\right.\Rightarrow x=\frac{1}{2}; y=\frac{5}{6}; z=\frac{-5}{6}\)

Vậy..........

6 tháng 8 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2.\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\\\dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\\\dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\\\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow y+z=\dfrac{1}{2}-x\). Thay vào \(y+z+1=2x\) ta được \(\dfrac{1}{2}-x+1=2x\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)

+) \(x+y+z=\dfrac{1}{2}\Rightarrow x+z=\dfrac{1}{2}-y\). Thay vào \(x+z+2=2y\) ta được \(\dfrac{1}{2}-y+2=2y\Rightarrow3y=\dfrac{5}{2}\Rightarrow y=\dfrac{5}{6}\)

\(\Rightarrow x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+z=\dfrac{1}{2}\Rightarrow\dfrac{4}{3}+z=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}-\dfrac{4}{3}=\dfrac{-5}{6}\)

Vậy \(x=\dfrac{1}{2};y=\dfrac{5}{6};z=\dfrac{-5}{6}\)