Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=1+1.2+1.2.3+...+1.2.3.....n\)
\(=1!+2!+3!+4!+...+n!\)
Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.
Ta lại có:
\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)
\(=33+\left(...0\right)\)
\(=\left(...3\right)\)
Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.
a) \(\Rightarrow\left(n+1\right)+5⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;4\right\}\)
b) \(\Rightarrow2\left(2n+1\right)+7⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;3\right\}\)
Để n + 6 ⋮ n + 1 thì :
⇒ n + 1 + 5 ⋮ n + 1 mà n + 1 ⋮ n + 1
Như thế 5 ⋮ n + 1 và n + 1 ∈ Ư(5)
⇒ Ư(5)={ 1;5 }
n + 1 = 1 ⇒ n = 0
n + 1 = 5 ⇒ n = 4
Vậy .............
⋮⋮⋮ai trả lời đc mk cho 3
có hội nha
bài tập tết của mk đó
nl mk sắp phải nộp rồi
Vì \(3^n+1\)là số chính phương nên:
\(3^n+1=k^2\)
\(\Leftrightarrow3^n=\left(k+1\right)\left(k-1\right)\)
Đặt: \(\hept{\begin{cases}3^p=k+1\\3^q=k-1\end{cases}}\left(p>q\right)\)
Suy ra: \(p+q=n\)
Và \(3^p-3^q=2\)
\(\Leftrightarrow3^q\left(3^{p-q}-1\right)=1\cdot\left(3-1\right)\)
\(\hept{\begin{cases}q=0\\p=1\end{cases}\Rightarrow}n=p+q=1\)
Vậy với n=1 thì \(3^n+1\)là scp
a, Ta có : 8 ⋮ n + 1
=> n + 1∈ Ư(8) ∈ {1;2;4;8} ( Vì đề bạn là số tự nhiên nha)
=> n ∈ {0;1;3;7}
b, 10n + 14 ⋮ 2n + 2
=> (10n + 10) + 4 ⋮ 2n + 2
=> 5(2n + 2) + 4 ⋮ 2n + 2
Vì 5(2n + 2) ⋮ 2n + 2 nên 4 ⋮ 2n + 2
=> 2n + 2 ∈ Ư(4) ∈ {1;2;4)
=> 2(n + 1) ∈ {1;2;4}
Mà 2(n + 1) luôn chẵn => 2(n + 1) = 2;4
=> n = 0;1
https://olm.vn/hoi-dap/question/984695.html
áp dụng bài đó rồi giải bài của bn
Ta có :
A = 1 + 1.2 + 1.2.3 + 1.2.3.4 + ... + 1.2.3.4. ... . n
A = 1! + 2! + 3! + 4! + ... + n!
Ta thấy từ 5! trở lên đều có tận cùng là 0(vì chứa thừa số 2 và 5) nên tổng của chúng cũng tận cùng là 0.
\(\Rightarrow\)A = 1 + 2 + 6 + 24 + (......0)
A = (......3) + (.....0)
A = (......3)
Mà số chính phương không có tận cùng là : 2 ; 3 ; 7 ; 8 nên n \(\in\varnothing\)