Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
Xét hai trường hợp
\(\cdot n=1\Leftrightarrow2019^0+6=1+6=7\)( thỏa mãn )
\(\cdot n>0\Leftrightarrow\hept{\begin{cases}2019^n⋮3\\6⋮3\end{cases}\Rightarrow}\left(2019^n+6\right)⋮3\)
Mà \(2019^n+6>3\)nên\(2019^n+6\)là hợp số ( loại )
Vậy \(n=0\)
Bài giải
Vì \(2019^n\) có chữ số tận cùng là 0 ; 1 hoặc 9
=> \(2019^n+6\) có chữ số tận cùng là 6 ; 7 hoặc 5
Mà \(2019^n+6>6\) và số nguyên tố lớn hơn 2 đều là số lẻ
\(\Rightarrow\text{ }\) Để \(2019^n+6\) là số nguyên tố thì chữ số tận cùng của \(2019^n+6\)phải bằng 7
\(\Leftrightarrow\text{ }2019^n=1\)\(\Leftrightarrow\text{ }n=0\)
Vậy để \(2019^n+6\) là số nguyên tố thì \(n=0\)
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm rồi dễ lắm bạn ạ
đùa tí bạn ấn vào dòng chữ xanh này nhé Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
biết đâu mk chỉ thấy mọi người ở chtt nhiều nên mình không biết mà